7 STAR
STAR Offline Library Long Writeup

AN

4+ Class
Lilbrary

User Guide and Reference Manual

Revision: 1.22
Date: 2001/05/09 05:10:42

CONTENTS CONTENTS

Contents
I User Guide 1
1 Philosophy and Motivation 2
2 Platforms and Compilers 3
3 Organization of the SCL 3
4 Accessing the SCL 4
5 Macros 4
6 Documentation 5
7 Known Problems 5
8 Support and Reporting Bugs 5
Il Reference Manual 7
9 Global Constants and Definitions 8
9.1 PhysicalConstants e e 8
9.2 StGlobals e 10
9.3 SystemOfUnits 11
9.4 Definitionof Particles e 17
9.4.1 BasicCONCept 17
9.4.2 Implementationof Particles 17
9.4.3 StParticleDefinition e 17
9.4.4 Predefined Particles e 19
9.45 HeaderFiles e 20
9.4.6 HowtoDefineaNewParticle 21
9.4.7 TheParticleTable 21

CONTENTS CONTENTS

9.4.8 StParticleTable 21
949 Examples 22
9.4.10 List of Predefined Particle Definitions 26
9.4.11 UMLDIagrams v e e e e e e 30

10 Class Reference 31
10.1 StAngle e 32
10.2 StRastCircleFitter 34
10.3 StGetConfigValue e 36
10.4 StHbook 38
105 StHelix o 44
10.6 StHeliXD 50
10.7 StLorentzVEeCtOr e 51
10.8 StLorentzVectorD e 60
10.9 StLorentzVectorF 60
10.10 StMath 61
10.11 StMatriX o 62
10.12 StMatrixD 70
10.13 StMatrixF 70
10.14 StMemoryInfo L 71
10.15 StMemoryPool 73
10.16 StPhysicalHelix e 74
10.17 StPhysicalHelixD e 76
10.18 StPrompt 77
10.19 StRandom 79
10.20 StTemplates o o e e e 81
10.21 StThreeVeCctor o 82
10.22 StThreeVectorD o 89
10.23 StThreeVectorF 89
10.24 STTIMEr . . . o 90
10.25 Random 93

CONTENTS CONTENTS

A Helix Parametrization 109
A.1 Calculation of the particle momentum o 109
A2 Distantmeasure e 111
A.3 Distance of closest approach betweentwo helices 112
A4 Intersectionwith acylinder (p=const) 113
A5 Intersectionwithaplane. L 114
A6 Limitations 115
AT CaseB =0 115
A.8 Why are there only 5 independent helix parameters? 116

CONTENTS CONTENTS

Part |
Usar Guide

1 PHILOSOPHY AND MOTIVATION

1 Philosophy and Motivation

Code-reusability is often claimed to be one of the most important benefits to be realized from Object-
Oriented programming. This is not really a new concept, especially in High Energy Physics (HEP) where
many Fortran subroutine libraries, most notably CERNLIB* have been used for many years. There are
however, several distinct differences between such subroutine libraries and class libraries which Object-
Oriented languages allow. First standardized data structures, or containers, along with operations associ-
ated with such objects are combined in classes. Second, with subroutine libraries one does not have the
opportunity to extend or alter the functionality of a routine unless the source code is available and recom-
pilation is possible. On the other hand, Object-Oriented languages like C++ allows the user to produce a
derived class via inheritance which one can add functionality through the addition of member functions or
data storage through the addition of data members.

Most C++ compilers come with what is called the “Standard C++ Library” which defines generic container
classes (i.e. linked lists, sorted lists, etc.) and simple algorithms associated with these containers. However
the needs of the HEP community are much more specialized in terms of the containers we use—things
like three- and four-vectors, random number generators, matrices, etc., and such objects are poorly dealt
with in expensive commercial class libraries. It was with this motivation that Leif Lonnblad proposed
A Class Library for High Energy Physics (CLHEP) in C++ at the Computing in High Energy Physics
(CHEP) conference in 1992. This library provided basic HEP specific classes and although it went a long
way in providing a standard for C++ in HEP, C++ was not a mature nor standardized language at the
time. Recently (December 1997) an ANSI committee has proposed an international standardization of the
C++ language? which makes some components of CLHEP redundant and some other parts unnecessarily
inflexible (i.e. adding three-vectors with elements of different types).

For these reasons it was felt that the basic component classes of CLHEP (like vectors and matrices) could
be rewritten incorporating contemporary new standardized features of the C++ language. These include the
use of templates, exception handling, namespaces, use of the Standard Template Library (STL) STL etc. It
was also felt that additional functionality specific to the STAR experiment could be incorporated to make
this a real STAR Class Library (SCL); things like implementing the STAR track model, data base interfaces
etc. Even a simple interface to HBOOK is included. The code in the SCL is written to conform to the ANSI
standard and conventions of the Standard C++ Library. The directory and Make i le structure is modelled
very closely after the pioneering work of the GEANT4 collaboration. Documentation is also seen as an
important component of this development. This manual provides a detailed description of each class, its
functionality, its dependencies, as well as a description of all user accessible member functions. Example
programs and there expected output are also included. More detailed examples testing the functionality of
each and every member function are provided in the examples directory in the library itself. Web based
documentation, giving the user access to the header files and source code is foreseen in the near future.

These developments have been made in consultation with the CERN LHC++ group who maintain the
official version of CLHEP and they have expressed interest in perhaps incorporating some of this library in
a future release. This is also by no means a complete library and as more and more people get involved with
development, it is expected to expand. So look through the manual and feel free to make any comments,
good or bad to the collaboration and developers.

http:/imvwwenl.cern.ch/asd/index.html
2http://www.cygnus.com/misc/wp/nova7/

3 ORGANIZATION OF THE SCL

2 Platforms and Compilers
The StarClassLibrary (SCL) is currently tested on the following platforms and compilers.

1. HP-UX 10.20:

e aCC A.01.06 or higher versions.
e gcc/g++ 2.9.5.

2. Red Hat Linux 5.1 to Red Hat Linux 6.1:
e gcc/g++ 2.91.66 or higher.
3. Solaris 2.4-2.6:

e CC 4.2 and modified Object Space 2.0.2 Standard Library.
e CC 5.0 or higher

Tests with Visual C++ 5.0 fail because of the lack of support of templated member functions and a broken
overloading mechanism. Visual C++ 6.0 is not tested yet. Further tests on AlX and IRIX are not foreseen
unless there is sufficient user demand.

3 Organization of the SCL

All documentation, code, and header files of the SCL is contained in a directory named StarClassLibrary.
It contains 2 further sub-directories: ./examples and ./doc.

To summarize:

StarClassLibrary is the top directory,

. contains the different header files (extension .h and .hh), and the referring source code (extension
.cc),

Jdoc contains all SCL documentations,. This directory is further divided up in ./doc/tex for the
IATEXguide (this document) and ./doc/html for a class browser. Both subdirectories contain
makefiles in order to prepare the final document from the various sources.

Jexamples contains small self-describing programs to test and demonstrate most the features of
every classes. There is a GNUmakefile provided to compile and link the non-ROOT versions
of the examples. Note that, except on Linux, you have to use gmake in order to process the
makefile since it contains several GNU extension. Please read the examples/README file
for further instructions.

5 MACROS

4 Accessing the SCL

The SCL is part of the official STAR software distribution and is therefore present in the actual STAR
software releases.

The StarClassLibrary is under CVS control at BNL. It can be accessed via afs:

1. Obtain an afs token: klog -cell rhic.

2. Make sure $CVSROOT is set properly:
(i.e. CVSROOT = /afs/rhic/star/packages/repository)

3. Check-out package into your current working directory:
cvs checkout StRoot/StarClassLibrary

5 Macros

The StarClassLibrary is coded under the assumption that all ANSI features are available. If the used
compiler is fully ANSI compliant the SCL will compile without any modifications.

Because the new C++ ANSI standard pushes the limits of current compiler technology, a number of com-
piler and Standard C++ Library features are often missing or implemented in a way that differs from the
ANSI standard.

In order to use the SCL also on those systems various macros were defined which either disable certain fea-
tures, e.g. exception handling, or use slightly modified (and less elegant) code. The following macros are
used throughout the SCL. If the STAR environment is installed properly they should be defined according
to your platform/compiler.

ST_NOMEMBER TEMPLATES: defined if the compiler does not support template member functions.

ST_NOEXCEPTI ONS: defined if the compiler does not support exception handling.

ST_NONUMERI C_.LI M TS: defined if the STL class numeric_limits is not available (it is usually located
in the <l imits> header file).

ST_NO.TEMPLATE_DEF_ARGS: defined if the compiler does not support template default arguments
ST_NO.NAMESPACES: defined if the compiler does not support multiple namespaces.

ST_OLD_CLHEP_SYSTEMOF_UNI TS: user defined if one must use units as defined in CLHEP v1.2 (use
of this macro is strongly discouraged).

NOHBOOK_I NI T: restricts the automatic initialization of HBOOK memory.

ST_SOLVE_TEMPLATES: force the instantiation of SCL templates when using StTemplates.hh (see
reference section for more).

__ROOT__: This macro is automatically set if the header files are processed in a ROOT environment. If you
want to use the SCL in a standalone mode you can either use the templated versions of the classes or
undefine this flag in order to eliminate any ROOT dependencies.

8 SUPPORT AND REPORTING BUGS

6 Documentation

The SCL documentation consists of the User Guide and Reference Manual located in StarClassLibrary/doc/tex,
i.e. this document. This directory contains a Makefile which allows to create either a PS version (make) or

a PDF version (make pdf). The latter also includes bookmarks and allows to follow references in the text

via hyperlinks. PDF is certainly the preferred format since it combines the advantages of HTML (links) and
PostScript (printing) in one version. If you have trouble creating either the PS or the PDF version because

of missing applications (LaTeX, dvips, dvipdf) you can get the current “dev” versions at the following
URL: http://www._star._bnl _gov/STARAFS/comp/root/special docs_html.

7 Known Problems

e The SCL should compile without any compiler warnings except on Sun platforms with CC4.2 due
to shortcomings of the compiler.

e The Sun compiler verion CC4.2 does not provide the Boolean data type bool. Therefore bool is
implemented as integer type (int). As a consequence overloading of (member) functions according
to bool/Zint types is not possible. Note that the StPrompt class is affected (see section 10.18).

e In order to run programs built with the shared version of the SCL and standard library on Sun plat-
forms with CC4.2, itis necessary to define an environment variable, LD_L 1 BRARY _PATH, to indicate
the directory containing the shared library.

e If you are using an old cfront compiler who still uses template databases or repositories you
might encounter unresolved symbols when linking with the SCL library. In order to avoid this prob-
lem one has to include StTemplates.hh once somewhere in the application. The only known
platform where this is necessary is SUN with the CC4 compiler. Note, that one also has to set the
ST_SOLVE_TEMPLATES flag in order to enable the template instantiation. By setting or omitting
this macro in the referring Makefile one can selectively switch the forced instantiation on and off.

e The SCL uses heavily the Standard C++ Library and thus templates. In certain cases such as the
CINT interpreter used by ROOT the use of the template SCL classes (or classes using templates) is
not possible. Here one has to use the equivalent non-template version. Table 1 gives an overview of
the available non-template/non-STL classes. Please note that the template versions should be used
whenever possible.

All non-template classes listed in the table can be used in ROOT. The SCL library also contains the referring

ROOT dictionary. Note that this increases the size of the classes by ~ 12 byte depending on the platform.

8 Support and Reporting Bugs

Currently the StarClassLibrary is supported by a small group. Hopefully as more people begin to use it
and add to it, there will be a larger support base for it. If there is a problem or bug, report it to one or more
of the following:

8 SUPPORT AND REPORTING BUGS

template class non-template class
StThreeVector<float> StThreeVectorF
StThreeVector<double> StThreeVectorD
StLorentzVector<float> StLorentzVectorF
StLorentzVector<double> | StLorentzVectorD
StMatrix<float> StMatrixF
StMatrix<double> StMatrixD
StHelix StHelixD
StPhysicalHelix StPhysicalHelixD

Table 1: Template classes and their non-template/non-STL equivalents.

starsoft-l@bnl.gov
starsofi-l@bnl.gov
brian.lasiuk@yale.edu

thomas.ullrich@yale.edu

Part 11

Reference M anual

9 GLOBAL CONSTANTS AND DEFINITIONS

9 Global Constants and Definitions

There is a distinction between the header files which define the STAR data types, system of units, physical
constants, simple macros, etc. from those files that actually contain class definitions. This section contains
the headers that are necessary to operate in the STAR C++ programming environment.

9.1 Physical Constants

Summary Physical Constants contains the definitions of many important physical constants
with the units.

Synopsis #include ""PhysicalConstants.h"
requires SystemOfUnits. h (included by default)

Description Is now modified from v1.2 of CLHEP to include the new naming convention of the
units. All units and constants are still defined to be of type:
static const double

pi = 3.14159265358979323846

twopi = 2*pi

halfpi = pi/2

pi2 = pi*pi

Avogadro = 6.0221367e+23/mole

c_light = 2.99792458e+8 * meter/second
Cc_squared = c_light * c_light

h_Planck = 6.6260755e-34 * joule*second
hbar_Planck = h_Planck/twopi

hbarc = hbar_Planck * c_light
hbarc_squared = hbarc * hbarc
electron_charge = - eplus

e_squared = eplus * eplus

0.51099906 * MeV
938.27231 * MeV
939.56563 * MeV

electron_mass _c2
proton_mass_c2
neutron_mass_c2

kaon_0 short mass c2 = 497.672 * MeV
pion_plus_mass_c2 = 139.5700 * MeV
pion_minus_mass_c?2 = 139.5700 * MeV
lambda mass_c2 = 1115.684 * MeV
antilambda mass c2 = 1115.684 * MeV
Xi_minus_mass_c2 = 1321.32 * MeV

9 GLOBAL CONSTANTS AND DEFINITIONS 9.1 Physical Constants

amu_c2 = 931.49432 * MeV

amu = amu_c2/c_squared

muO = 4*pi*l.e-7 * henry/meter
epsilon0 = 1./(c_squared*mu0)

electromagnetic coupling

= 1.43996e-12 MeV*millimeter/(eplus\™2)
elm_coupling

= e_squared/(4*pi*epsilon0)
fine_structure_const

= elm_coupling/hbarc
classic_electr_radius

= elm_coupling/electron_mass_c?2
electron_Compton_Jlength

= hbarc/electron_mass_c2
Bohr_radius

=electron_Compton_length/

fine_structure_const

alpha_rcl2 =
fine_structure_const*
classic_electr_radius*
classic_electr_radius

twopi_mc2_rcl2 =
twopi*electron_mass_c2*
classic_electr_radius™*
classic_electr_radius

k_Boltzmann 8.617385e-11 * MeV/kelvin

STP_Temperature = 273.15*kelvin

STP_Pressure 1.*atmosphere

kGasThreshold 1.e-2*gram/centimeter3

9.2 StGlobals

9 GLOBAL CONSTANTS AND DEFINITIONS

9.2 StGlobals

Summary
Synopsis

Description

10

StGlobals defines the STAR data types as well as simple macros and templates.
#include "'StGlobals.hh"

Contains SCL-wide definitions. Since it also contains a few small template func-
tions its use is restricted to environments which support templates. It also serves
as an interface to CLHEP since it defines the relation between the basic STAR and
CLHEP datatypes.

typedef double HepDouble
typedef int Heplnt
typedef float HepFloat
typedef bool HepBoolean
typedef HepDouble StDouble
typedef HepFloat StFloat
typedef Heplnt Stint
typedef HepBoolean StBool
typedef long StLong

typedef unsigned short StUshort
typedef unsigned long StSizeType

Global macros

#define StNPOS (T (StSizeType)0)
Global templates

template<class T>

inline Stint sign(T a)
{returna<0?-1:1; }
template<class T>

inline StDouble sqgr(T a)

{ return a*a; }

Macros for debugging and testing

#define PR(X) cout << (#x) << " = " << (X) << endl;

9 GLOBAL CONSTANTS AND DEFINITIONS 9.3 SystemOfUnits

9.3 SystemOfUnits

Summary

Synopsis

Description

SystemOfUnits defines a set of consistent SI units. All are defined as static
const HepDouble. The units are backwards compatible with CLHEP v1.2.

#define ST_ADD_OLD CLHEP_SYSTEM_OF UNITS // if necessary
#include "'SystemOfUnits._h"

SystemOfUnits differs from version 1.2 of CLHEP by using the complete name of
the unit. In this manner there is no pollution of the global namespace with single
character constants like "'m’ for meter, ’s’ for second, etc. The previous units from
CLHEP are still available but the user must define a flag ST_ADD_OLD_CLHEP -
SYSTEM_OF_UNITS before including SystemOfUnits. h. One other important
difference is that the constants as defined in the header file are contained in a names-
pace namespace units. If your compiler does not support namespaces, the macro
ST_NO_NAMESPACES must be defined and the constants will reside in the global
namespace!

Note, that the base units are currently mapped to the ones in GEANT3 (cm, GeV,
s). This is likely to change in future. Any changes to the base units, however, do
not effect your code at all as long as you use SystemOfUni ts consistently.

namespace units {

BASE UNITS:

Length [L] (the base unit is centimeter)

millimeter 0.1

millimeter2 millimeter*millimeter
millimeter3 millimeter*millimeter*millimeter

centimeter = 10.*millimeter

centimeter2 = centimeter*centimeter
centimeter3 = centimeter*centimeter*centimeter
meter = 1000.*millimeter

meter?2 = meter*meter

meter3 = meter*meter*meter

kilometer = 1000.*meter

kilometer*kilometer
kilometer*kilometer*kilometer

kilometer?2
kilometer3

micrometer = 1.e-6*meter
nanometer = l.e-9*meter
femtometer = 1l.e-15*meter
fermi = 1*femtometer

11

9.3 SystemOfUnits 9 GLOBAL CONSTANTS AND DEFINITIONS

barn = 1.e-28*meter2
millibarn = 1l.e-3*barn
microbarn = l.e-6*barn
nanobarn = 1.e-9*barn

Angle (the base unit is radian)

radian = 1.

milliradian = 1.e-3*radian

degree (M_P1/180.0)*radian
steradian 1.

Time [T] (the base unit is second, and Hertz)

second =1

nanosecond = 1.e-9*second
microsecond = 1.e-6*second
millisecond = 1.e-3*second

hertz = 1./second
kilohertz = 1.e+3*hertz
Megahertz = 1.e+6*hertz

Hz = 1*hertz

kHz = 1*kilohertz
MHz = 1*Megahertz
Electric charge [Q]

eplus = 1.

e_SlI = 1.60217733e-19
coulomb = eplus/e_SI

DERIVED UNITS:
Energy [E] (the base unit is GeV)

Megaelectronvolt = 1.e-3

electronvolt = 1l.e-6*Megaelectronvolt
kiloelectronvolt = 1_e-3*Megaelectronvolt
Gigaelectronvolt = 1_e+3*Megaelectronvolt
Teraelectronvolt = 1.e+6*Megaelectronvolt
MeV = Megaelectronvolt

eV = electronvolt

keV = kiloelectronvolt

GeV = Gigaelectronvolt

TeV = Teraelectronvolt
joule = eV/e_SI

Mass [E][T2][L~2]

12

9 GLOBAL CONSTANTS AND DEFINITIONS 9.3 SystemOfUnits

kilogram = joule*second*second/(meter*meter)
gram = 1l.e-3*kilogram
milligram = 1.e-3*gram

Power [E][T~!]

watt = joule/second
Force [E][L™!]

newton = joule/meter
Pressure [E]J[L 3]

hep_pascal = newton/meter2
bar = 100000*pascal
atmosphere = 101325*pascal

Electric current [Q][T!]
ampere = coulomb/second

Electric potential [E][Q~]

Megavolt = MeV/eplus
kilovolt = 1l.e-3*Megavolt
volt = l.e-6*Megavolt
millivolt = 1l.e-3*volt

Electric resistance [E][T][Q2]
ohm = volt/ampere

Electric capacitance [Q%][E1]

farad = coulomb/volt
millifarad = l1.e-3*farad
microfarad = 1.e-6*farad
nanofarad = 1.e-9*farad
picofarad = 1l.e-12*farad

Magnetic Flux [T][E][Q~]
weber = volt*second

Magnetic Field [T][E][Q '][L 2]

tesla = volt*second/meter?2
gauss = l.e-4*tesla
kilogauss = l.e-1*tesla

Inductance [T?][E][Q~2]
henry = weber/ampere

13

9.3 SystemOfUnits 9 GLOBAL CONSTANTS AND DEFINITIONS

Temperature
kelvin = 1.

Amount of substance
mole = 1.

Activity [T~1]
becquerel
curie

1./second
3.7e+10 * becquerel

Absorbed dose [L2][T 2]

gray = joule/kilogram
Miscellaneous

perCent = 0.01
perThousand = 0.001
perMillion = 0.000001

As defined in CLHEP
#ifdef ST _ADD OLD CLHEP_SYSTEM OF UNITS

BASE UNITS:

Length [L] (the base unit is centimeter)
mm = 0.1

mm2 = mm*mm

mm3 = mm*mm*mm
cm = 10.*mm

cm2 = cm*cm

cm3 = cm*cm*cm

m = 1000.*mm
m2 = m*m

m3 = m*m*m

km = 1000.*m
km2 = km*km

km3 = km*km*km
microm = 1.e-6*m
nanom = 1.e-9*m

Angle (the base unit is radian)

rad = 1.
mrad = 1l.e-3*rad
deg = (M_P1/180.0)*rad

14

9 GLOBAL CONSTANTS AND DEFINITIONS 9.3 SystemOfUnits
st = 1. // (steradian)
Time [T] (the base unit is second, and Hertz)
S =1
ns = 1.e-9*s
ms = 1l.e-3*s

Examples

Mass [E][T2][L~2]

kg = joule*s*s/(m*m)
o] = 1.e-3*kg

mg = 1.e-3*g

#endif

Program Code:

#define ST_ADD OLD_CLHEP_SYSTEM OF_UNI TS
#i ncl ude "SystenOf Units. h"

usi ng namespace units;
int main()

cout << "This programillustrates the use of SystenOfUnits

and Physi cal Constants" << endl;

(o111) S R R
-------------------- << endl;
cout << "1 millimeter =" << (1*millimeter) << endl;
cout << "1 neter = " << (1*neter) << endl;
cout << "1 centimeter = " << (1l*centinmeter) << endl;
cout << "1 ferm = "o<< (1*ferm) << endl;
cout << "1 barn = " << (1*barn) << endl;
cout << "1 degree = " << (1*degree) << endl;
cout << "1 second = " << (1l*second) << endl;

cout << "1 nanosecond

<< (1*nanosecond) << endl;

cout << "1 kHz = " << (1*kHz) << endl;
cout << "1 newton = " << (1*newt on) << endl;
cout << "1 joule = " << (1*joul e) << endl;
cout << "1 GV = "< (17 GY) << endl;
cout << "1 G gaelectronvolt =" << (1*Gd gael ectronvolt) << endl;

#i f def ST_ADD_OLD CLHEP_SYSTEM OF_UNI TS

cout << "The old CLHEP definitions are al so supported:" << endl;

(o] 0] ¥ | B R T T

cout << "1 mm=" << (1*mm << endl;
cout << "1 m = << (1*m) << endl;

---" << endl;

15

9.3 SystemOfUnits 9 GLOBAL CONSTANTS AND DEFINITIONS

cout << "1 cm=" << (1*cm << endl
cout << "1s =" << (1*s) << endl
cout << "1 ns =" << (1*ns) << endl
#el se
cout << "\nTo use the old CLHEP definitions the flag:" << endl
cout << " ST_ADD OLD CLHEP_SYSTEM OF UNITS' << endl ;

cout << "nust be defined" << endl
cout << "**This is an obsolete file and shoul d NOT be used**" << endl
#endi f

return O

Program Output:

This programillustrates the use of SystemXUnits
and Physi cal Const ants

1 milimeter = 0.1

1 meter = 100

1 centinmeter =1

1 ferm = le-13

1 barn = le-24

1 degree = 0. 0174533
1 second = 1

1 nanosecond = le-09

1 kHz = 1000

1 newmton = 6. 24151e+07
1l joule = 6.24151e+09
1 GV = 1

1 G gaelectronvolt =1
The ol d CLHEP definitions are al so supported
1 mm=20.1

1 m =100

lcm=1

1s =1

1 ns = 1le-09

16

9 GLOBAL CONSTANTS AND DEFINITIONS 9.4 Definition of Particles

9.4 Definition of Particles
9.4.1 Basic Concept

There are essentially two base classes which define the interface to STARs ”Definition of Particles”:
StParticleDefinitionand StParticleTable.

StParticleDefinitionaggregatesinformation to characterize particles property such as name, mass,
spinand life time, while StParticleTable is a container class which holds a list of all available particle
definitions and allows to query for particle definitions if only the name or the numeric identifier (GEANT3
or PDG) of a particle is known.

The StarClassLibrary provides the StParticleDefinition class to represent particles. Various parti-
cles such as electron, proton, and gamma have their own classes derived from StParticleDefinition.
These concrete pre-defined particles, however, do not directly inherit from StParticleDefinition
but indirectly through a layer of abstract classes which determins the particle "type”. The following types
are defined: StMeson, StBaryon, StLepton, Stlon and StBoson. The UML diagrams for the
underlying design are depicted in Fig. 9.1 in section 9.4.11.

9.4.2 Implementation of Particles

The idea and design of the StParticleDefinition class and all concrete particle classes derived
from it is largely based on the design of the G4ParticleDefinition class from Geant4 (RD44).
Although the code is in large parts different (modified or rewritten) and adapted to the STAR framework
the basic idea stays the same.

An individual class is defined for each predefined particle. The object in each class is unique and defined
as a static object (so-called singleton). Users can get pointers to such objects by using static methods in
these classes.

9.4.3 StParticleDefinition

The StParticleDefinition class has "read-only” properties which characterize the individual par-
ticle such as name, mass, charge, spin, and so on. These properties are set during initialization of each
particle. Operators and methods to get these properties are listed below. Note, that the class itself is not a
singleton but all derived concrete classes are.

Synopsis #include "StParticleDefinition.hh"

Public StParticleDefinition(const string & aName,

Constructors double mass,
double width,
double charge,
int iSpin,
int iParity,

17

9.4 Definition of Particles 9 GLOBAL CONSTANTS AND DEFINITIONS

int iConjugation,
int ilsospin,

int ilsospinz,
int gParity,
const string & pType,

int lepton,

int baryon,

int encoding,
bool stable,
double lifetime);

Constructor for a particle with given parameters. For meaning and units of the
arguments check the public member functions below.

Public Member string name() const;
Functions Name of the particle.

double mass() const;
Mass of the particle, in units of equivalent energy [GeV/c?].

double width() const;

Decay width of the particle, usually the width of a Breit-Wigner function, assum-
ing that you are near the mass center anyway (in units of equivalent energy, i.e.
[GeVIc?)).

double charge() const;
Charge of the particle (in units of Coulomb). Divide by eplus from PhysicalConstants.h
to get the charge in units of +e.

double spin() const;
Total spin of the particle, in units of 1.

int iSpin() const;
Total spin of the particle, also often denoted as capital J, in units of 1/2.
int iParity() const;

Parity quantum number, in units of 1. If the parity is not defined for this particle,
we will set this to 0.

int iConjugation() const;
Charge conjugation quantum number in units of 1.

double isospin() const;
Isospin in units of 1/2.

double isospin3() const;
3rd-component of isospin in units of 1/2.

int ilsospin() const;
Isospin in units of 1.

int ilsospin3() const;
3rd-component of isospin in units of 1.

int iGParity() const;
Value of the G-parity quantum number.

18

9 GLOBAL CONSTANTS AND DEFINITIONS 9.4 Definition of Particles

string type() const;
General textual type description of the particle.

int leptonNumber() const;

Lepton quantum number.

int baryonNumber() const;

Baryon quantum number.

int pdgEncoding() const;

Particle Data Group integer identifier of this particle

int antiPdgEncoding() const;

Particle Data Group integer identifier of the corresponding anti-particle.
bool stable() const;

True if particle is stable.

double lifeTime() const;
Related to the decay width of the particle. The mean life time is given in seconds.

StParticleTable* particleTable() const
Returns pointer to the particle table.

Public Member int operator==(const StParticleDefinition &) const;
Operators Test two particles for identity. Note, that the concrete particles are implemented as
singletons. In this case also the values of the pointers are identical.

int operator!=(const StParticleDefinition &) const;
True if two particles are not identical.

Global Operators ostreamé&
operator<<(ostream& os, const StParticleDefinition& p);
Prints the particle defined by p to output stream os.

9.4.4 Predefined Particles

The StarClassLibrary provide currently 77 predefined particles. They are listed in table 2-6 in section
9.4.10. Note that the PDG encoding is defined for elementary particles only and not for ions. GEANT3
IDs are listed for completeness only. They are not part of a particle definition. See section 9.4.7 on how to
get a particle definition for a given GEANT3 ID.

Each concrete particle class is defined in one header file. The name of the header file is simply the name of
the class plus the .hh extension. As mentioned above all particles are implemented as singletons, i.e. only
one instance (a static object) exist. This minimizes the memory usage and ensures coherent definitions.

Each of the predefined classes has a member function instance() which returns a pointer to the only
existing object. All constructors, including the copy constructor and the assignment operator are private to
ensure that no second copy can be created. The following code demonstrates how to obtaina 7.

#i ncl ude " St Pi onM nus. hh"

19

9.4 Definition of Particles 9 GLOBAL CONSTANTS AND DEFINITIONS

voi d exanpl el()
{

St Pi onM nus *pi m = St Pi onM nus: :instance();
cout << *pim << endl;

Please remember that no copy of an instance can be made. The following code does not compile.

St Pi onM nus pim= *(StPionMnus::instance()); // ERROR assignment operator is private

As already mentioned above there is an additional layer of abstract classes between StParticleDefinition
and the concrete classes (see also Fig. 9.1). This layer allows to distinguish particles according to their type
(baryon, meson, etc). They do not add any data member or overwrite any functions; with other words
there’s no overhead involved. The idea behind this is best illustrated in the following example:

void fillH stos(StMeson*); /1 version 1
void fillH stos(StBaryon*); /1 version 2

voi d MyMCAnal ysi s(StParticleDefinition* particle)

{

cout << "Got a " << particle->nane() << endl;

cout << "The pdg nass of this guy is: " << particle->mass() << endl;

fillH sto(particle); /1 calls version 1 if particle is a meson, 2 if its a baryon
}

9.4.5 Header Files

Each particle is defined in a separate header file. This results in an enormous amount of header files and
include statements one has to deal with. To make life easier there is one header file which contains them
all: StParticleTypes.hh. Note that you still have to include StParticleTable.hh if you want
to use the particle table.

But remember that in many situations the header files of the pre-defined particles do not necessarily have
to be included. Since the base class already defines the entire interface it is often sufficient to include
StParticleDefinition.hh only. This reduces the dependencies of your code and therefore the
compile time. Here are two example where you don’t need the header of the specific particles:

#include "StParticleDefinition.hh"
#i ncl ude "StParticl eTabl e. hh"

voi d exanpl e2(StParticleDefinition* p)

{
if (p == StParticleTable::instance()->findParticle("pi+")) {
cout << "CGot pi+" << endl;
cout << "Mass is: " << p->nmmss() << endl;
}
}
voi d exanpl e3(StParticleDefinition* p)
{

20

9 GLOBAL CONSTANTS AND DEFINITIONS 9.4 Definition of Particles

if (p->baryonNunber() '= 0 && p->type() == "neson") {
cout << "Qops, this cannot be ..." << endl;
cout << "Check this funny particle:" << endl;
cout << *p << endl;

9.4.6 How to Define a New Particle

This is easy. All you need is the data to define the particle: mass, lifetime, spin, etc. The safest (and fastest)
way to proceed is to use one of the existing particle classes of the same type (ion, meson, baryon, lepton,
boson) as a template. All you have to do is to replace all occurrences of the old class name with the new
name in the header (.hh) and source (.cc) file. All what is left now is to replace the arguments passed to the
constructor of the static data member with the new ones.

There’s no need to register the new particle definition in the particle table. The constructor of the base class
(StParticleDefinition) does this automatically for you.

9.4.7 The Particle Table

All particles are automatically registered in the particle table. The particle table is also a singleton,
i.e., only one instance can be created. To obtain an pointer to the one and only instance one has to
use the instance() member function or obtain the pointer through any predefined particle using its
StParticleDefinition: :particleTable() member function.

The class actually holds several maps which allow fast access to available particle definitions by name,
PDG encoding, or GEANT3 Id. Remember that some particles have no corresponding GEANT3 Id and
PDG encoding does not exist for ions. STAR extended the list of particle IDs in GSTAR to overcome the
limited coverage of elementary particles in GEANT3. They are taken into account.

9.4.8 StParticleTable

Synopsis #include "StParticleTable.hh"
typedef vector<StParticleDefinition*> StVecPtrParticleDefinition;

Public None.
Constructors All constructors, including the copy constructor and the assignment operator are
private to ensure that no second copy can be created.

Public Member static StParticleTable* instance();
Functions Returns pointer to the only existing instance of self.

static StParticleTable* particleTable();
Returns pointer to the only existing instance of self. Same as instance().

unsigned int entries() const;
Number of entries in the table, i.e. number of defined particles.

21

9.4 Definition of Particles 9 GLOBAL CONSTANTS AND DEFINITIONS

Warnings

9.4.9 Examples

unsigned int size() const;
Number of entries in the table, i.e. number of defined particles. Same as entries().

bool contains(const string & pname) const;
Returns true if particle with name pname is defined.

bool contains(int pdgld) const;
Returns true if particle with PDG encoding pdgld is defined.

bool containsGeantld(int gld) const;
Returns true if particle with GEANT3 ID gld is defined.

StParticleDefinition* findParticle(const string& pname) const;
Returns pointer to particle with name pname or a null pointer if the particle is not
defined.

StParticleDefinition* findParticle(int pdgld) const;
Returns pointer to particle with PDG encoding pdgld or a null pointer if the particle
is not defined.

StParticleDefinition* findParticleByGeantld(int gld) const;
Returns pointer to particle with GEANT3 ID encoding gld or a null pointer if the
particle is not defined.

void insert(StParticleDefinition* part);
Insert new particle definition part by hand”. Note, that this is not necessary since
each defined particle is automatically registered (using this member function).

void erase(StParticleDefinition* part);
Removes given particle definition part from the table.

void dump(ostream& os = cout);
Dumps (prints) all particles defined in the table to ostream os. Note, that os defaults
to cout (stdout).

StVecPtrParticleDefinition allParticles() const;
Returns a vector of pointers to all particle definitions stored in the table.

The order of the particles in the table is arbitrary and system dependent. Adding
new particles might alter the order as well. Do not write code that relies on indices
into a vector obtained from al IParticles()

What follows is a list of simple programs which should help to get familiar with the particle definition
classes. In some cases the shown output of the program is shortened (marked by [...]) to save space.

Examplel — Program Code:

#i ncl ude <i ostream h>
#i nclude "StParticl eTabl e. hh"
#i nclude "StParticl eTypes. hh"

int main()

22

9 GLOBAL CONSTANTS AND DEFINITIONS

9.4

Definition of Particles

particle definitions to stdout

StParticl eTabl e: :instance()->dunp();

{
/1
/Il Wite all
/1
return O;
}

Programs Output:

Particle Nane :

PDG particle code :

Mass [GeV/c2] :
Wdth [GeV/c2]
Lifetime [nsec]
Charge [€]
Spin :

Parity :

Charge conjugation :

Isospin: (I,12z):
GParity :

Lept on nunber
Baryon nunber :
Particle type :
Is stable :

L]

Particle Nane :

PDG particle code :

Mass [GeV/ c2]
Wdth [GeV/c2]
Lifetime [nsec]
Charge [€]
Spin :

Parity :

Charge conjugation :

Isospin: (I,12z):
GParity :

Lept on nunber
Baryon nunber
Particle type :
Is stable :

Example2 — Program Code:

#i ncl ude <i ostream h>

B+

521
5.2789
0

0. 00162
1

0/ 2

-1

0
(172, 1/2)
0

0

0

meson
no

xi _c0
4132
2.4703
0

9. 8e-05
0

1/2

1

0
(12, -1/2)
0

0

1
baryon
no

#include "StParticl eTabl e. hh"
#i nclude "StParticl eTypes. hh"

int main()
/1
/1 Print all
/1

cout << "The follow ng particles have no PDG encoding:" << endl;

particles w thout PDG encoding

23

9.4 Definition of Particles

StParticleTable & able = *(StParticleTable::instance());
St VecPtrParticleDefinition vec = table.allParticles();
for (int i=0; i<vec.size(); i++) {

if (vec[i]->pdgEncoding() == 0)

cout << vec[i]->nane().c_str() << endl;
}

return O;

Programs Output:

The followi ng particles have no PDG encodi ng:

He3

al pha

deut er on

opti cal phot on
triton

Example3 — Program Code:

#i ncl ude <i ostream h>
#i nclude "StParticl eTabl e. hh"
#i ncl ude "StParticl eTypes. hh"

int main()
{
I
/1 Check consistency of GEANT3 | ookup table
I
StParticleTable *table = StParticl eTabl e::instance();
StParticleDefinition *pl, *p2;
for (int i=0; i<100; i++)
pl = tabl e->findParticl eByGeant!|d(14);
if (p1) {
p2 = tabl e->findParticle(pl->nanme());
if (*pl !'= *p2)
cerr << "WARNI NG inconsistency in | ookup table" << endl;
}
}
return O;
}

Programs Output:

9 GLOBAL CONSTANTS AND DEFINITIONS

None
Example4 — Program Code:
#i ncl ude <i ostream h>

#i ncl ude <i omani p. h>
#i ncl ude <typei nfo>

#i nclude "StParticl eTabl e. hh"
#i nclude "StParticl eTypes. hh"

int main()
/1

/1 This is a small

24

program whi ch |

used to create the

9 GLOBAL CONSTANTS AND DEFINITIONS 9.4

Definition of Particles

/1 the TeX tables of all defined particles in the next
/1 section. It saves a lot of typing and prevents typos.
/1 In order to get the class nane | had to use

/1 the typeid() function which is only available

/1 if RTTI is swtched on.

StParticleTable & able = *(StParticleTable::instance());
St VecPtrParticleDefinition vec = table.allParticles();

for (int i=0; i<vec.size(); i++) {
cout << setw(14) << vec[i]->name() << "\t&"
if (vec[i]->pdgEncoding() == 0)
cout << "N A" << "\t&";

el se
cout << vec[i]->pdgEncoding() << "\t& ";
int kK = 0;
for (int j=0; j<100; j++) {
if (vec[i] == table.findParticleByGeantld(j)) {
k =1j;
br eak;
}
}
if (k'!'=0)
cout << j << "\t&";
el se

cout << "N A" << "\t&";
cout << setw(20) << typeid(*vec[i]).name() << "\t& ";

i f (dynam c_cast <St Meson*>(vec[i]))
cout << "StMeson " << "\t";

el se if (dynam c_cast <St Boson*>(vec[i]))
cout << "StBoson " << "\t";

el se if (dynam c_cast<StLepton*>(vec[i]))
cout << "StlLepton" << "\t";

el se if (dynam c_cast <StBaryon*>(vec[i]))
cout << "StBaryon" << "\t";

else if (dynam c_cast<Stlon*>(vec[i]))

cout << "Stlon o "\t
el se {
cout << "ERROR unknown base class" << endl;
return 2;
}
cout << " \\\\ \\hline" << endl;
}
return O;

Programs Output:

B+ & 521 & NA & St BMesonPl us & St Meson
B- & -521 & NA & St BMesonM nus & St Meson
BO & 511 & NA & St BMesonZero & St Meson
BsO & 531 & N A & St BsMesonZero & St Meson
D+ & 411 & 35 & St DMesonPl us & St Meson
D &-411 & 36 & St DMesonM nus & St Meson
DO & 421 & 37 & St DMesonZero & St Meson

\hli
\hli
\hli
\hli
\hli
\hli
\hli

ne
ne
ne
ne
ne
ne
ne

25

9.4 Definition of Particles 9 GLOBAL CONSTANTS AND DEFINITIONS

Ds+ & 431 & 39 & St DsMesonPlus & St Meson \\ \hline
Ds- & -431 & 40 & St DsMesonM nus & St Meson \\ \hline

[...]

9.4.10 List of Predefined Particle Definitions
Tables 2 to 6 list® all predefined particle definitions. The meaning of the different columns are:

Particle Name: An unique, descriptive name assigned to each particle. This name can be used in StParticleTable
to obtain a pointer to the actual particle definition.

PDG Encoding: The number assigned to this particle by the Particle Data Group.

GEANT3 Ids: The number GEANT3 uses to reference this type of particle. The table also includes IDs
defined for GSTAR (STAR specific).

Class Name: Name of the class. Use StClassName: : instance() to get a pointer to the referring
particle definition.

Derived From: Name of the base class. This defines also the type of the particle.

Particle Name | PDG Encoding | GEANT3 Ids | Class Name Derived From
anti_nu_e -12 N/A | StAntiNeutrinoE StLepton
anti_nu_mu -14 N/A | StAntiNeutrinoMu | StLepton
anti_nu_tau -16 N/A | StAntiNeutrinoTau | StLepton
e+ -11 2 | StPositron StLepton
e- 11 3 | StElectron StLepton
mu+ -13 5 | StMuonPlus StLepton
mu- 13 6 | StMuonMinus StLepton
nu_e 12 4 | StNeutrinoE StLepton
nu_mu 14 N/A | StNeutrinoMu StLepton
nu_tau 16 N/A | StNeutrinoTau StLepton
tau+ -15 33 | StTauPlus StLepton
tau- 15 34 | StTauMinus StLepton

Table 2: List of defined leptons

3See example 3 in section 9.4.9 on how this list was created.

26

9 GLOBAL CONSTANTS AND DEFINITIONS

9.4 Definition of Particles

Particle Name | PDG Encoding | GEANT3 Ids | Class Name | Derived From
alpha N/A 47 | StAlpha Stlon
deuteron N/A 45 | StDeuteron | Stlon
He3 N/A 49 | StHe3 Stlon
triton N/A 46 | StTriton Stlon

Table 3: List of defined ions

Particle Name | PDG Encoding | GEANT3 Ids | Class Name Derived From
gamma 22 1 | StGamma StBoson
opticalphoton N/A 50 | StOpticalPhoton | StBoson

Table 4: List of defined bosons

27

9.4 Definition of Particles 9 GLOBAL CONSTANTS AND DEFINITIONS

Particle Name | PDG Encoding | GEANT3 Ids | Class Name Derived From
anti_B0 -511 N/A | StAntiBMesonZero | StMeson
anti_Bs0 -531 N/A | StAntiBsMesonZero | StMeson
anti_DO -421 38 | StAntiDMesonZero | StMeson
anti_kaon0 -311 156 | StAntiKaonZero StMeson
B+ 521 N/A | StBMesonPlus StMeson
B- -521 N/A | StBMesonMinus StMeson
BO 511 N/A | StBMesonZero StMeson
BsO 531 N/A | StBsMesonZero StMeson
D+ 411 35 | StDMesonPlus StMeson
D- -411 36 | StDMesonMinus StMeson
DO 421 37 | StDMesonZero StMeson
Ds+ 431 39 | StDsMesonPlus StMeson
Ds- -431 40 | StDsMesonMinus StMeson
eta 221 17 | StEta StMeson
eta_prime 331 N/A | StEtaPrime StMeson
Jlpsi 443 N/A | StiPsi StMeson
kaon+ 321 11 | StKaonPlus StMeson
kaon- -321 12 | StKaonMinus StMeson
kaon0 311 155 | StKaonZero StMeson
kaonOL 130 10 | StKaonZeroLong StMeson
kaon0S 310 16 | StKaonZeroShort StMeson
omega 223 150 | StOmegaMeson StMeson
phi 333 151 | StPhi StMeson
pi+ 211 8 | StPionPlus StMeson
pi- -211 9 | StPionMinus StMeson
pi0 111 7 | StPionZero StMeson
rho+ 213 153 | StRhoPlus StMeson
rho- -213 154 | StRhoMinus StMeson
rho0 113 152 | StRhoZero StMeson

Table 5: List of defined mesons

28

9 GLOBAL CONSTANTS AND DEFINITIONS

9.4

Definition of Particles

Particle Name | PDG Encoding | GEANT3 Ids | Class Name Derived From
anti_lambda -3122 26 | StAntiLambda StBaryon
anti_lambda_c+ -4122 N/A | StAntiLambdacPlus StBaryon
anti_neutron -2112 25 | StAntiNeutron StBaryon
anti_omega- -3334 32 | StAntiOmegaMinus StBaryon
anti_omega_cO -4332 N/A | StAntiOmegacZero StBaryon
anti_proton -2212 15 | StAntiProton StBaryon
anti_sigma+ -3222 27 | StAntiSigmaPlus StBaryon
anti_sigma- -3112 29 | StAntiSigmaMinus StBaryon
anti_sigma0 -3212 28 | StAntiSigmaZero StBaryon
anti_sigma_c+ -4212 N/A | StAntiSigmacPlus StBaryon
anti_sigma_c++ -4222 N/A | StAntiSigmacPlusPlus | StBaryon
anti_sigma_cO -4112 N/A | StAntiSigmacZero StBaryon
anti_xi- -3312 31 | StAntiXiMinus StBaryon
anti_xi0 -3322 30 | StAntiXiZero StBaryon
anti_xi_c+ -4232 N/A | StAntiXicPlus StBaryon
anti_xi_cO -4132 N/A | StAntiXicZero StBaryon
lambda 3122 18 | StLambda StBaryon
lambda_c+ 4122 41 | StLambdacPlus StBaryon
neutron 2112 13 | StNeutron StBaryon
omega- 3334 24 | StOmegaMinus StBaryon
omega_c0 4332 N/A | StOmegacZero StBaryon
proton 2212 14 | StProton StBaryon
sigma+ 3222 19 | StSigmaPlus StBaryon
sigma- 3112 21 | StSigmaMinus StBaryon
sigma0 3212 20 | StSigmaZero StBaryon
sigma_c+ 4212 N/A | StSigmacPlus StBaryon
sigma_c++ 4222 N/A | StSigmacPlusPlus StBaryon
sigma_c0 4112 N/A | StSigmacZero StBaryon
Xi- 3312 23 | StXiMinus StBaryon
xi0 3322 22 | StXiZero StBaryon
Xi_c+ 4232 N/A | StXicPlus StBaryon
xi_c0 4132 N/A | StXicZero StBaryon

Table 6: List of defined baryons

29

9.4 Definition of Particles 9 GLOBAL CONSTANTS AND DEFINITIONS

9.4.11 UML Diagrams

Particles StParticleDefinition <<singleton>>
+ mass() StParticleTable
+ width()
+ phqrge() + $particleTable()
+ !Spm() + ~StParticleTable()
+iParity() + $instance()
+ !Conquatlon() + entries()
+ ilsospin() + size()
+ stable() + contains()
+ StParticleDefinition() + contains() 1
- StParticleDefinition() 0..1 |+ contains() K>——
- StParticleDefinition() _mParticl + containsGeantld()
+ ~StParticleDefinition(O/ERM + findParticle()
+ operator ==() + findParticle()
+ name() 1 + findParticle()
+ operator !=() + findParticleByGeantld(
+ spin() + insert()
+isospin() + erase()
+ !sosp|_r13() + dump()
+ ilsospin3() - StParticleTable()
+ iGParity() - StParticleTable()
+ type()
+ leptonNumber()
+ baryonNumber() 0.1
+ pdgEncoding()
N ﬁf‘;‘]r':i’:qge'(z)”c‘)d'”go -$mParticleTable
+ particleTable()
- operator =()
abstract layer
StBaryon StBoson Stlon StMeson StLepton
+ StBaryon() + StBoson() + Stlon() + StMeson() + StParticleDefinition(
+ ~StBaryon() + ~StBoson() + ~Stlon() + ~StMeson() + ~StLepton()
- operator =() - operator =() - operator =() - operator =() - operator =()
<<singleton>> <<singleton>> <<singleton>> <<singleton>> | <<singleton>>
StProton | StGamma StHe3 StPionMinus,_ | | StPionZero .
=$mProton =$mGam -$mHej =$mPionMi =$mPionZero
+ $instance() + $instance() + $instance() + $instance() + $instance()
+ $proton() 1 + $gamma() 1 + $he3() 1 + $pionMinus() 1 + $pionZero() 1
- StProton() - StGamma() - StHe3() - StPionMinus() - StPionZero()

¢ & ¢ ' ¢

only a small fraction shown ...

Figure 9.1: UML diagram for particle definitions

30

10 CLASS REFERENCE

10 Class Reference

The classes which are currently implemented and available from the BNL CVS repository are described in
alphabetic order.

31

10.1 StAngle

10 CLASS REFERENCE

10.1 StAngle

Summary

Synopsis

Description

Public
Constructors

Public Member
Functions

Public Member
Operators

32

The StAngle class represents an angle in radians and provide all essential operation
in an unambigious way.

#include "StAngle.hh"
class StAngle;

This class represents an angle in units of radians. It behaves pretty much like a
double but ensures that its value always stay in the range [—, 7r]. Essentially all
operations as multiplication, addition, subtraction, or scaling are overloaded. This
class is especially useful if you deal with azimuthal symmetric problems since it
handles differences between angles correctly and avoids the usual problems related
to the 0 — 2 transition. This saves a lot of checks within the code as compared to
using simple Floats or doubles to represent angles.

However, this class should not be used when speed is crucial since it carries quite
some overhead. Use it when reliability and safety are major issues.

StAngle();
Default constructor.

StAngle(const StAngleé&);
Copy constructor.

StAngle(double alpha);
Create angle with alpha radians. alpha is automatically adjusted to fall in the
range [—mr, 7).

double degree();

Returns the angle in degree. The return value is always in the range [0° — 360°].
Please note that this is the only safe method to obtain the angle in degree. See
“pitfalls” below.

operator double() const;

Transforms a StAngle into a double (type cast operator). Since this operator
is defined one can use an StAngle everywhere where a double or Float can be
used. Essentially one can ignore this operator. It works for you in the background.

StAngle operator= (double angle);
Assignement operator. Initiate self with an angle (in radian) keeping self in the
range [—m, 7).

StAngle operator+= (StAngle angle);
Add another angl e to self, keeping self in the range [—7, 7]

StAngle operator-= (StAngle angle);

Subtract angle from self. The difference will always be the smallest possible
difference. To give an example (for simplicity in degrees): 380° — 10° is 10° not
370°.

10 CLASS REFERENCE 10.1 StAngle

StAngle operator*= (double angle);
StAngle operator/= (double angle);
Multiply (divide) self by angle. Self stays in the range [—m, 7].

int operator== (const StAngle& angle);
Comparison operator. Note that z equals = + n2.

Global Functions StAngle average(StAngle alpha, StAngle beta);
Returns the average of two angles alpha and beta. To give an example (for
simplicity in degrees): the average of 380° and 10° is 15° not 195°.

Global Operators StAngle operator+ (StAngle alpha, StAngle beta);
StAngle operator- (StAngle alpha, StAngle beta);
StAngle operator* (StAngle alpha, double ¢);
StAngle operator/ (StAngle alpha, double ¢);
Operators to allow to add, subtract two angles as well as scale and divide angles by
a scalar. The results always will be a StAngle with a value in the range [—, 7].

Pitfalls StAngle will always try to stay within its range ([—, 7]). This way you can scale
angles. The pitfall here is if you for example want to calculate its value in degree
without using the degree () method.

StAngle a = 2.7;
cout << a*180/pi << endl; // doesn’t work

will not work. The expression a*180/p1i consist of a StAngle times a dou-
ble which matches the overloaded operator StAngle operator* (StAngle
alpha, double c) that returns type StAngle which of course never gets
larger than 7.

The correct way is: StAngle a = 2.7;
cout << a*degree() << endl; // works
orcout << static_cast<double>(a)*180/pi << endl; // also works

Whenever you need the result of the multiplication of a double and a StAngle
to be of type double you have to use the type cast.

33

10.2 StFastCircleFitter 10 CLASS REFERENCE

10.2 StFastCircleFitter

Summary

Synopsis

Description

Public
Constructors

Public Member
Functions

Examples

34

Fast circle fitting functor.

#include "StFastCircleFitter.hh"
class StFastCircleFitter;

Fast fitting functor using a iterational linear regression method (ILRM).
Reference: N.Chernov, G.A.Ososkov, Computer Physics Communication 33 (1984)
329-333.

The functor fits the origin (X, y) and the radius. No stored point is excluded from
the fit, i.e. all points are used.

Return codes:

0 fit ok
1-4 error occured, no results

StFastCircleFitter::Ffit()returnstrue onlyifrc =0

StFastCircleFitter();
Default constructor.

void addPoint(double x, double y);
Add point with coordinates X, y.

void clear();
Reset all fit results. Deletes all points stored so far.

unsigned int numberOfPoints() const;
Returns number of points stored and used in the fit.

bool fit();
Performs the fit.

double radius() const;
Returns fitted radius.

double xcenter() const;
Returns x of fitted center.

double ycenter() const;
Returns y of fitted center.

double variance() const;
Returns variance estimate. See reference for more on the validity of the variance.

int rc() const;
Return code of fit. Returns 0 in case of success else values between 1-4.

#include "StFastCGrcleFitter. hh"

#i ncl ude <i ostream h>
#i ncl ude <cstdlib>

int main()

10 CLASS REFERENCE 10.2 StFastCircleFitter

{
StFastCircleFitter fitter;
const unsigned int nPoints = 42;
const double x0 = 10. 23;
const double y0 = 0.018;
const double r = 19.91;
doubl e phi;
int i;
cout << "lnput: x0 = << x0 << endl;
cout << " y0 = << y0 << endl;
cout << " r = << r << endl;
cout << " n = << nPoints << endl;
for (i=0; i<nPoints; i++) {
phi = drand48();
fitter.addPoi nt (r*cos(phi)+x0, r*sin(phi)+y0);
}
fitter.fit();
cout << "Fit 1: x0 = << fitter.xcenter() << endl;
cout << " y0 = << fitter.ycenter() << endl;
cout << " r = << fitter.radius() << endl;
cout << " n = << fitter.nunber O Points() << endl;
fitter.clear();
for (i=0; i<nPoints; i++) {
phi = drand48();
fitter.addPoi nt (r*cos(phi)+x0, r*sin(phi)+y0);
}
fitter.fit();
cout << "Fit 2: x0 = << fitter.xcenter() << endl;
cout << " y0 = << fitter.ycenter() << endl;
cout << " r = << fitter.radius() << endl;
cout << " n = << fitter.nunber O Points() << endl;
return O;
}
Programs Output:
I nput : x0 = 10. 23
y0 = 0.018
r = 19.91
n =42
Fit 1: x0 = 10. 23
y0 = 0.018
r = 19.91
n = 42
Fit 2: x0 = 10. 23
y0 = 0.018
r =19.91
n = 42

35

10.3 StGetConfigValue 10 CLASS REFERENCE

10.3 StGetConfigValue

Summary

Synopsis

Description

Syntax

Examples

36

StGetConfigValue is a set of templated functions which read resource values from
a given configuration file.

#include "'StGetConfigValue.hh"

StGetConfigValue() implements a simple parser which reads resource values as-
sociated with a given name from a configuration file. There are three versions of
StGetConfigValue(): one for reading a scalar resource, one for a multi-value re-
sources (e.g arrays), and one for STL containers.

These functions are useful when many parameters have to be read from one or
several ascii resource files. They can not replace a real database but are useful for
development purposes and small programs.

StGetConfigValue() ignores every character after the shell-like comment character
“#” or the C++-like comment characters “//”. They can be used for inline comments
as well as comments which spawn a whole line.

comment
// comment

In the configuration file the name of the variable has to be separated from its value
by a colon “:”.

name: value

template<class T>
void StGetConfigValue(const char* fname,
const char* name, T& val);

Searches the file fname for name and stores the referring value in val. If the
name is not found the value of val is not altered. Note that this version can also be
used to read in StThreeVector objects since the operator>>() is properly
defined in the context of this class.

template<class T>

void StGetConfigValue(const char* fname,
const char* name,
T& val, int N);

Searches the file fname for name and stores the referring N values in the (i) con-
tainer object val. Note that T can be an ordinary C array (e.g. float* ora STL
container (e.g. vector). If the name is not found the content of val is not altered.

Program Code:

#i ncl ude " St d obal s. hh"

#i ncl ude " St Get Confi gVval ue. hh"
#i ncl ude " St Thr eeVect or. hh"

#i ncl ude <vector>

int main()

10 CLASS REFERENCE

10.3 StGetConfigValue

{
const char* filenane = "exanple.conf"
doubl e singleValue = 10
St Get Confi gVal ue(fil enane, "singleval ue", singleValue);
cout << "singleValue = " << singleValue << endl
float *manyVal ues = new float[10];
St Get Confi gVal ue(fil enane, "manyVal ues", nanyVal ues, 10)
cout << "manyValues = ";
for (int i=0; i<10; i++) cout << nanyValues[i] <<’
cout << endl
vect or <doubl e> vec(10);
St Get Confi gVal ue(fil enane, "vec", vec, 5)
cout << "vec =",
for (int k=0; k<10; k++) cout << vec[k] << ' ';
cout << endl
St Thr eeVect or <doubl e> vec3
St Get Confi gVal ue(fil enane, "vec3", vec3)
cout << "vec3 = " << vec3 << endl
string anyNane
St Get Confi gVal ue(fil enane, "anyNane", anyNane)
cout << "anyName = " << anyNanme << endl
float xfoo = 3.14;
St Get Confi gVal ue(fil enane, "xfoo", xfoo)
cout << "xfoo =" << xfoo << endl
return O
}
Configuration file:
#
This is a conment at the begi nning
#
si ngl eVal ue: 100. /1 comment
manyVal ues: 01234567829 # coment
vec: 10.1 10.2 30.3 0 42

/1 This is an comment

and this is an conmment

vec3: 1.05 1.05 2.5
anyNane: Al adi n

Programs Output:

si ngl eVal ue = 100

manyValues = 0123456789
vec =1.051.052.504200000
vec3 = (1.05, 1.05, 2.5)

anyName = Al adin

xfoo = 3.14

37

10.4 StHbook

10 CLASS REFERENCE

10.4 StHbook

Summary

Synopsis

Description

Persistence
Related Classes

Public
Constructors

StHbook is an HBOOK* wrapper which allows creation of 1 and 2 dimensional
histograms and ntuples.

#include "'StHbook.hh"

This class defines a wrapper that allows the user to fill and create one and two di-
mensional histograms as well as ntuples. It defines its own function prototypes in
C, so there is no need for the use of cFortran.h, however the number of opera-
tions is more limited. Should the user require more functionality, such prototypes
must be added. All initialization of HBOOK and ZEBRA is performed within the
classes. No additional compile flags are needed. The user must ensure that his/her
code be linked with packlib. If the pawc common is too small it is possible
to increase the value of the constant ”SizeOfPawCommon~ to whatever is
required and recompile.

The initialization of HBOOK may be prevented by defining the macro NO_HBOOK -
_INIT in case it is initialized in other parts of the program.

None.
None.

Histogram File
StHbookFile(const char* name,

int rl = 1024, int lun = 10);
Create an HBOOK output file with a name name a default record size rl of 1024,
and a logical unit number lun of 10. Note that the record length can take values
between 1024 and 8192 only.

1-dimensional Histograms
StHbookHisto(const char* name,
int nbin, float x1, float x2);
Constructs a histogram with title name and nbin bins over a range 21 < = < z2.

StHbookHisto(int id, const char* name, int nbins,

float x1, float x2);
Constructs a histogram with id number id, title name and nbin bins over a range
zl <z < 22,

StHbookHisto(const StHbookHisto&);
Copy constructor.

2-dimensional Histograms
StHbookHisto2(const char* name, int xbins,

float x1, float x2, int ybins, float yl1, float y2);
Constructs a two-dimensional histogram with a label name, xbins in the x direction
bounded by z1 < x < 22 and ybins in the y direction bounded by y1 < y < y2.

“http://wwwen1.cern.ch/asd/index.html

38

10 CLASS REFERENCE 10.4 StHbook

Public Member
Operators

Public Member
Functions

StHbookHisto2(int id, const char* name,

int xbins, float x1, float x2

int ybins, float y1, float y2);
Constructs a two-dimensional histogram with an id number id, a label name, xbins
in the x direction bounded by z1 < z < 22 and ybins in the y direction bounded
by y1 < y < y2.
StHbookHisto2(const StHbookHisto2&);
Copy constructor;

Row Wise N-tuples
StHbookTuple(int id, const char* name, int ntag);
Constructs an ntuple with an id number id, a name name and ntag rows.

StHbookTuple(const char* name, int ntag);
Constructs an ntuple with a default id number, a name name and ntag rows.

1-dimensional Histograms
StHbookHisto& operator= (const StHbookHisto&);
Assignment operator.

2-dimensional Histograms
StHbookHisto2& operator= (const StHbookHisto2&);
Assignment operator.

Row Wise N-tuples
operator<<
Assignment of tags to the ntuple.

Hbook Files

int isGood() const;

Checks the status of the file. Checks the return code from hropen and the ZEBRA
error flag. Returns 1 if okay.

void StHbookFile::list(const char* opt = 0);
Lists the contents of an HBOOK directory with opt being the possible options. As
a default, only the histograms are listed. HBOOK equivalent is hldir

void StHbookFile: :saveAndClose();
Saves the Histograms and N-tuples in the HBOOK file and closes the file. Com-
bines the calls of hrout, hrend, hcdir.

1-dimensional histograms

void fill(float x, float weight = 1);

Adds an entry x to a histogram with a default weight of 1. HBOOK equivalent is:
hfill.

fastFill(float x, float weight = 1);

Adds an entry x to a histogram with a default weight of 1. HBOOK equivalent is:
hfl.

int 1dQ;

Returns the id number of the histogram.

39

10.4 StHbook

10 CLASS REFERENCE

40

int entries();
Returns the number of entries in a histogram. HBOOK equivalent is hnoent.

float max(Q)
Returns the maximum channel content of a histogram. HBOOK equivalent is hmax.

float minQ)
Returns the minimum channel content of a histogram. HBOOK equivalent is hmin.

float sum(Q);
Returns the integrated contents of a histogram. HBOOK equivalent is hsum.

float mean();
Returns the mean of the distribution in the histogram. HBOOK equivalent is hstati.

float sigma();
Returns the standard deviation of the distribution in the histogram. HBOOK equiv-
alent is hstati.

void setOpt(const char¥*);
Select an option for the histogram. HBOOK equivalent is hidopt.

void print(Q);
Prints an ascii representation of the histogram to standard out. HBOOK equivalent
is hprint.

void reset();
Zeros the bin contents of a histogram. HBOOK equivalent is hreset.

2-dimensional Histograms

void Till(float x, float y, float weight = 1);

Adds an entry x,y to a histogram with a default weight of 1. HBOOK equivalent is
hfill.

void TastFill(float x, float y, float weight = 1);
Adds an entry x,y to a histogram with a default weight of 1. HBOOK equivalent is:
hf2.

int idQ);
Returns the id number of the histogram.

int entries();
Returns the number of entries in a histogram. HBOOK equivalent is hnoent.

float max(Q)
Returns the maximum channel content of a histogram. HBOOK equivalent is hmax.

float minQ
Returns the minimum channel content of a histogram. HBOOK equivalent is hmin.

float sum(Q);
Returns the integrated contents of a histogram. HBOOK equivalent is hsum.

float mean();
Returns the mean of the distribution in the histogram. HBOOK equivalent is hstati.

10 CLASS REFERENCE 10.4 StHbook

Examples

float sigma();
Returns the standard deviation of the distribution in the histogram. HBOOK equiv-
alent is hstati.

void setOpt(const char¥®);
Select an option for the histogram. HBOOK equivalent is hidopt.

void print();

Prints an ascii representation of the histogram to standard out. HBOOK equivalent
is hprint.

void reset();

Zeros the bin contents of a histogram. HBOOK equivalent is hreset.

Row Wise N-Tuples
void setTag(const char* tag);
Labels the entries in a row with a name tag.

void book();

Allocates space for the n-tuple. HBOOK equivalent is hbookn.
int 1dQ;

Returns the id number of the ntuple.

int length(Q);
Returns the number of tags in the ntuple.

int entries();
Returns the number of rows the ntuple contains. HBOOK equivalent is hnoent

void fill(float *vec);
Fills a row in an ntuple. HBOOK equivalent is hfn.

StBool getEvent(int number, float *vec);
Returns the entries from the row number in an array vec. Returns 1 if no error code
is returned. HBOOK equivalent is hgnf.

#i ncl ude <unistd. h>
#i ncl ude <i ostream h>
#i ncl ude <string>

#i ncl ude "Random h"

#i ncl ude "JanmesRandom h"

#i ncl ude "RandGauss. h"

#i ncl ude " St Hbook. hh"

int main()

{
/1 Define name of output file
string fil ename("hbook. ntp");

cout << "HBOXX file is: " << filenane << endl;

/1 Define the HBOXK file
St HbookFi | e hbookFil e(filename.c_str());

41

10.4 StHbook

10 CLASS REFERENCE

42

/! The N-tuple
const int tupleSizel = 2;
St HbookTupl e t heTupl e("randont', t upl eSi zel) ;

/1 1abel the rows

t heTupl e. set Tag("i ndex"). set Tag("randont') . book();
/] or alternatively

//theTupl e << "index" << "randon << book;

/'l the Histogram
St HbookHi st o t heHi st o("gauss distribution", 100, -10, 10);

float tuple[tupleSizel]l; // array to be filled

HepJamesRandom engi ne;
RandGauss gaussDi stri bution(engine);

for(int ii=0; 1i<100; ii++) {
int k=0;
tupl e[k++] = static_cast<float>(ii);
doubl e randomNunber = gaussDi stribution. shoot();
tupl e[k++] = static_cast<fl oat >(randomNunber);

theTuple.fill (tuple);

theHi sto.fill (static_cast<float>(randomNunber), 1);

}

cout << "\nAvailable information regarding the histogram' << endl;
(oo 1 | SR e " << endl;
cout << "Histogram|D: " << theHisto.id() << endl ;

cout << "Histogramentries: " << theHisto.entries() << endl;

cout << "Hi stogram nmax: " << theHi sto. max() << endl ;

cout << "Hi stogram mn: " << theH sto.mn() << endl ;

cout << "Hi stogram sum " << theHi sto.sum) << endl ;

cout << "Hi stogram nean: " << theH sto. nmean() << endl ;

cout << "Hi stogram sigma: " << theH sto.signma() << endl ;

/1 print ASCI| representation of the H stogramto std out
//theH sto.print();

t heHi st 0. set Opt ("show") ;

cout << "\nAvailable infornation regarding the N-tuple" << endl;

COUE S Mommi oo " << endl;
cout << "N-tuple ID: " << theTuple.id() << endl ;
cout << "N-tuple entries: " << theTuple.entries() << endl;
cout << "N-tuple length: " << theTuple.length() << endl;

cout << "\nFile information" << endl;

cout << "hbookFile status: (1) is good " << hbookFile.isGood() << endl;

hbookFile.list();
hbookFi | e. saveAndd ose();

return O;

10 CLASS REFERENCE 10.4

StHbook

Programs Output:

HBOXK file is: hbook.ntp

Avail abl e i nformation regardi ng the histogram

Hi st ogram | D 2

Hi st ogram entries: 100

Hi st ogr am nmax: 14

Hi st ogram m n: 0

Hi st ogr am sum 100

Hi st ogr am nean: -0.114711

Hi st ogr am si gna: 0.907482

Avai l abl e i nformation regarding the N-tuple

N-tuple ID: 1
N-tuple entries: 100
N-tuple length: 2

File information
hbookFil e status: (1) is good 1

===> Directory : //H STOS

43

10.5 StHelix

10 CLASS REFERENCE

10.5 StHelix

Summary

Synopsis

Description

Persistence

Related Classes

Public
Constructors

StHelix is a parametrization of a helix which is a mathematical representation of
the trajectory of a charged particle in a uniform magnetic field.

#include "StHelix.hh"
class StHelix;

This class defines a parameterized helix in space which can be used to represent the
trajectory of a charged particle in a homogeneous magnetic field. The parametriza-
tion is taken from Bock®. It is also the model that is used in the E896 experiment
at BNL and the model used in the current STAR tracking code. In the STAR coor-
dinate system it specifies a helix by 5 independent parameters:

e Curvature — the inverse of the radius of the circle in the x-y plane.

Dip Angle - the inclination angle of the helix in the y-z plane.

Phase — the azimuth in the xy plane measured from the ring center.

Origin — starting point of the helix.

Orientation — gives the sense of whether the helix rotates clockwise or counter
clockwise.

A more detailed description of the underlying parametrization and several formulas
used for the implementation can be found in appendix A.

A special case of the helix occurs when the curvature is set to zero. This rep-
resents a straight line and so the StHelix class can be used to represent tracks in
the absence of a magnetic field as well. The origin of the helix is specified by an
StThreeVector and may be set individually as may all other components of
the parametrization. The interface provides access functions for all parameters that
define the helix.

Important: For B = 0 the sense of rotation is ill defined. All what matters is that
®q = ¥ — hrr/2 is done correctly, i.e. with the same arbitrary h as passed to the
constructor as last argument.

None

Class StPhysicalHelix is derived from StHelix which defines a helix by specifying
the 3 momentum, the charge, and the origin of a particle.

StHelix(double c, double dip, double phase,

const StThreeVector<double>& o, int h=-1);
Constructs a helix with curvature=c, dip angle=dip, phase=phase, origin=0, and
charge=-h. Note that for B = 0 (c = 0) the sense of rotation is ill defined. All what
matters is that &g = ¥ — hxr/2 is done correctly, i.e. with the same arbitrary h as
passed to the constructor as last argument.

5R. K. Bock et al., Data Analysis Techniques for High-Energy Physics Experiments, : ed M. Regler, [Cambridge University Press:

1990].

44

10 CLASS REFERENCE 10.5 StHelix

Public Member

Operators
Public Member

Functions

StHelix(const StHelix& hlx)
Copy Constructor. Constructs a helix with the content of hlx.

None

It is possible to set and access the data members within the class via the names
associated with a space-time vector:

double dipAngle() const;
Returns the dip angle of the helix.

double curvature() const;
Returns the curvature (1/R) of the helix in the xy plane.

double phase() const;
Returns the phase of the helix.

double xcenter() const;
Returns the x-coordinate of the center of the circle.

double ycenter() const;
Returns the y-coordinate of the center of the circle.

double h() const;

Returns the orientation of the helix. In StPhysicalHelix it has the meaning: -
sign(g*B) where q is the charge of the particle and B is the sign of the magnetic
field. It specifies whether the helix rotates clockwise or counter-clockwise.

StThreeVector<double>& origin() const;
Returns the origin or starting point of the helix.

void setParameters(double c, double dip, double phase,
StThreeVector<double> o, int h);
Sets parameters in a unique an order dependent way.

double x(double s) const;
Returns the x-coordinate of the helix at a pathlength s.

double y(double s) const;
Returns the y-coordinate of the helix at a pathlength s.

double z(double s) const;
Returns the z-coordinate of the helix at a pathlength s.

StThreeVector<double> at(double s) const;
Returns the position in three space of the helix at a pathlength s.

double period() const;
Returns the period length of the helix.

pair<double, double> pathLength(double r) const;

Returns the path length of the helix given a radial distance (specified in cylindrical
coordinates). A pair is returned because the function is double valued within a
single period. The smallest path length (sometimes negative) is returned as the first
number of the pair.

45

10.5 StHelix 10 CLASS REFERENCE

double pathLength(const StThreeVector<double>& p) const;
Given a position p in space, returns the path length of the helix at the distance of
closest approach to the helix.

double pathLength(double x, double y) const;

Given a position in the xy-plane, returns the path length of the helix at the distance
of closest approach to the helix in the plane. Note, that the result differs from that of
the previous method which returns the distance of closest approach in 3 dimensions.
Only for helices with zero dip angle both methods will return the same values.

double pathLength(const StThreeVector<double>& r,
const StThreeVector<double>& n) const;

Returns the path length at which the helix intersects with a given plane. The plane
is defined by two vectors: r and n. r defines the position of one (arbitrary) point
on the plane and n is the referring normal vector. This method works for straight
tracks and helices. In case no solution exist, i.e., the helix does not intersect with
the plane, the largest possible numeric value is returned. This number can be ob-
tained by: numeric_limits<double>: :max().

pair<double, double> pathLengths(const StHelix& h) const;
Returns the path lengths at the distance-of-closest-approach between self and h,
i.e., the DCA between two helices. The first element of the pair is the referring
path length of self and the second element the path length of h. The method is
fast and robust but execution time will increase slightly for two helices with very
different dip angles and/or for large distances. The following pseudo-code explains
how to get the actual dca:

/1 given helix "nyhelix’ and ’'otherHelix
pai r<doubl e, doubl e> s = nyheli x. pat hLengt hs(ot her Hel i x) ;
doubl e dca = abs(nyhelix.at(s.first)-otherHelix.at(s.second));

double distance(const StThreeVector<double>& p) const;
Returns the minimal distance between a point s and self. Uses pathLength()
to obtain s at the distance of closest approach and returns abs(at(s)-p).

Note that this method returns the distance of closest approach in 3 dimensions,
i.e. not in the plane. The following pseudo-code explains how to get the distance in
the plane:

/1 given helix 'nyhelix’ and a point p
doubl e s = nyhelix. pathLength(p.x(), p.y()); // s at dca in xy-plane
double b = abs(p - nyhelix.at(s)); /'l myhelix. di stance(p) for 3d

bool valid() const;
checks for a valid parametrization. Currently implies that:

the dip angle cannot be /2.

46

10 CLASS REFERENCE 10.5 StHelix

Global Operators

h=+1 only!
the curvature >0.
void moveOrigin(double s);

Moves the origin along the helix to s which becomes the s=0 point. This redefines
the phase in a self-consistent way.

int operator== (const StHelix& vl1l, const StHelix& v2);
Returns 1 if the parameters of the two helices are identical.

int operator!= (const StHelix& v1, const StHelix& v2);
Returns 1 if any of the parameters of the two helices are not identical.

ostream& operator<<(ostream& os, const StHelix& h);
Prints the parameters of the helix h to output stream os.

47

10.5 StHelix 10 CLASS REFERENCE

Examples #i ncl ude " St Hel i x. hh"

#i ncl ude "SystenOf Units. h"

int main()
doubl e radi us = 2;
doubl e di pAngle = 10;
doubl e phase = 10;
doubl e x0 = 0;
doubl e y0 = 0;
doubl e z0 = O;
i nt H=-1;

pai r <doubl e, doubl e> s;

StHelix *helix = 0;
doubl e r = 0.1;

doubl e sl ow, sup, ds, ss;
St Thr eeVect or <doubl e> ori gin, point, mmpoint;

del ete helix;

helix = new StHelix(1/(radius*neter),
di pAngl e*degr ee,
phase*degr ee,
origin*mllinmeter,

H) ;

if (thelix->valid()) {
cerr << "Error: paranetrization is not valid" << endl;

}
el se {
cout << "The helix paranmeter are:" << endl;
cout << *helix << endl;
cout << "The period of the helix is: " << helix->period() << endl;
}
ds=100*cent i net er;
cout << "ds = " << ds << " ->" << helix->at(ds) << endl;
r=1*m
s = hel i x->pat hLengt h(r);
cout << "The helix reaches r=Ilmat sl1 =" << s.first
<< " and s2 = " << s.second << endl;

mmpoi nt = St Thr eeVect or <St Doubl e>(100, 100, 100);
ss = helix->pathLength(mpoint*nmillimeter);

cout << "The helix reaches r at s =" << ss << endl;
cout << "Crosscheck point = " << helix->at(ss)
<< ", delta = " << abs(mmpoint-helix->at(ss)) << endl;
return O;
}
Programs Output:

The helix paraneter are:
(curvature = 0.0005, dip angle = 0.174533, phase = 0.174533,
h =-1, origin = (0, 0, 0))

48

10 CLASS REFERENCE

10.5 StHelix

The period of the

ds = 1000 -> (-69
The helix reaches
The helix reaches
Crosscheck poi nt

helix is: 12760.2

. 8095, -972.386, 173.648)
r=lmat sl = -1026.31 and s2 = 1026. 31

r at s = -59.1696
= (-10.9531, 57.2299

-10. 2747),

delta =

162. 174

49

10.6 StHelixD 10 CLASS REFERENCE
10.6 StHelixD
Summary StHelixD is similar to StHe l i x (see 10.5) but does not contain or use templates
nor does it make any use of the Standard C++ library.
Synopsis #include "StHelixD._hh"
StHelixD;
Description The member functions, operators and non-member functions are identical to those

Related Classes

Persistence

50

of StHelix with the exception that whenever StHel ix returnsa StThreeVector<double>
aStThreeVectorDisreturned. The STL structure pair<double, double>

used in this context is replaced by a similar but non-template structure pairD. The

templated version should be preferred where possible.

The equivalent of StPhysicalHelix is the class StPhysicalHelixD which is derived
from StHelixD. StHelixD inherits from TObject if the SCL was compiled with the
__ROOT__ flag set.

Within the ROOT framework.

10 CLASS REFERENCE 10.7 StLorentzVector

10.7 StLorentzVector

Summary StLorentzVector is a templated general 4-vector class defining vectors in four-
space.
Synopsis #include "StLorentzVector.hh"

template<class T> StLorentzVector;

Description This class defines a general 4-vector which can be used to represent space-time
points, 4-momenta, etc. It has most of the functionality of StThreeVector for
the spatial component of the vector and adds further member functions which are
specific to a 4-vector. Its interface is modelled very closely to that of LorentzVector
in CLHEP with the significant difference that it is a templated vector. It offers es-
sentially the same functionality as the CLHEP version but like StThreeVector
is more flexible in terms of precision and storage optimisation, i.e. in order to
minimize for memory and storage volume a StLorentzVector’s with type ar-
gument Float can be used but easily transformed into a double precision version
for computation when higher accuracy is needed. In addition to the CLHEP ver-
sion there are a few member functions added which are useful in the context of
Heavy-lon Physics such as rapidity (), and mt().

The template argument is used to define the type associated with the x (pz), ¥y
(py), z (p.), and t (E) components. This argument must be one of the floating
point number data types available in the C++ language, either Float, double,
or long double. The default type is double. These are also specified as:
StFloat, StDouble, or StLongDouble in the STAR CLASS LIBRARY.

Please note that StLorentzVector is not virtual. This is a compromise in order
to minimize the storage size, i.e. to avoid the additional ballast of the virtual table

pointer.
Persistence None
Related Classes Class StLorentzVector uses StThreeVector as data member.
Public StLorentzVector<T>();
Constructors Constructs a 4-vector with all components initialized to 0.

StLorentzVector<T>(T x, Ty, T z, T t);
Constructs a 4-vector with given components X (pz), ¥ (Py), Z (pz), and t (E).

StLorentzVector<T>(StThreeVector<T> v, T t);
Constructs a 4-vector with spatial components given by StThreeVector v and
temporal component t.

StLorentzVector<T>(T t, StThreeVector<T> v);

Constructs a 4-vector with spatial components given by StThreeVector v and
temporal component t. Same as above but with the spatial component as 1¢ argu-
ment. Note that this is not available in CLHEP.

template<class X>
StLorentzVector<T>(const StLorentzVector<X> &vec)

51

10.7 StLorentzVector 10 CLASS REFERENCE

Public Member
Operators

52

Copy Constructor. Constructs a 4-vector with the content of vec. Note that vec
can be an object with different template arguments then self, i.e. one can instantiate
a vector of type doub I e with an vector of type float and vice versa.

template<class X>

StLorentzVector<T>

operator= (const StLorentzVector<X> &vec);

Assignment operator. Replaces the content of self with the content of vec. Note
that vec can be an object with different template arguments then self, i.e. one can
assign a vector of type doubl e to a vector of type Float and vice versa.

T& operator() (size t i);

T operator() (size_t i) const;

Returns components by index. The first version can also be used as Ivalue. Note
that the first index (the x-component) has index 0 while the time component has
index 3. The result for indices > 3 is platform dependent. If the compiler supports
exception handling an out_of_range exception is thrown.

T& operator[] (size_t i);
T operator[] (size_t i) const;
Same as operator () above.

StLorentzVector<T> operator- ();
Unary minus. Returns copy of self with all components negated.

StLorentzVector<T> operator+ ();
Unary plus. Returns copy of self.

StLorentzVector<T>&
operator*= (double ¢);
Returns self multiplied by scalar c.

StLorentzVector<T>&
operator/= (double ¢);
Returns self divided by scalar c.

template<class X>

bool

operator== (const StLorentzVector<X>& vec);
Equality check. Returns true if self equals vec else false.

template<class X>

bool

operator!= (const StLorentzVector<X>& vec);
Inequality check. Returns true if self is not equal to vec else false.

template<class X>

StLorentzVector<T>&

operator+= (const StLorentzVector<X>& vec);
Adds vec to self and returns self.

template<class X>
StLorentzVector<T>&

10 CLASS REFERENCE 10.7 StLorentzVector

Public Member
Functions

operator-= (const StLorentzVector<X>& vec);
Subtracts vec from self and returns self.

It is possible to set and access the data members within the class via the hames
associated with a space-time vector:

void setX(T x);
Set the x-component in Cartesian coordinate system.

void setY(T y);
Set the y-component in Cartesian coordinate system.

void setzZ(T z);
Set the z-component in Cartesian coordinate system.

void setT(T t);
Set the t-component

T x() const;
Returns the x-component in Cartesian coordinate system.

T y(const;
Returns the y-component in Cartesian coordinate system.

T z() const;
Returns the z-component in Cartesian coordinate system.

T t() const;
Returns the temporal component

It is also possible to access and set the data members via the momentum space
names:

void setPx(T px);

Set the p, component.

void setPy(T py);
Set the p,, component in momentum space.

void setPz(T pz);
Set the p, component in momentum space.

void setE(T e);
Set the energy component in momentum space.

template<class X>;
void setVect(StThreeVector<X> vec);
Set the spatial component by specifying the 3-vector.

T plus() const;
Returns the positive light-cone component given by ¢ + z.

T minus() const;
Returns the negative light-cone component given by ¢ — 2z

T px() const;
Returns the p, component in momentum space

53

10.7 StLorentzVector 10 CLASS REFERENCE

54

T py() const;
Returns the p,, component in momentum space.

T pz() const;
Returns the p, component in momentum space.

T e() const;
Returns the energy component.

const StThreeVector<T>& vect() const;
Returns a constant reference to the 3-vector component.

T m() const;
Returns the 4-vector invariant mass defined by:

m =/ E? — p?
Should the condition E? < p? be met, the function returns:
m = —/=(B =)

T m2() const;

Returns the 4-vector invariant squared (above).
T rapidity() const;

Returns the rapidity defined by:

T mt() const;
Returns the transverse mass defined by:

mr = \/p3 +m?

Note that this member function is not available from CLHEP.

T mt2() const;

Returns the square of the transverse mass (see above). Note that this member func-
tion is not available from CLHEP.

T phi() const;

Returns the azimuth angle of the 3-vector component.

T theta() const;
Returns the polar angle of the 3-vector component.

T cosTheta() const;
Returns the cosine of the polar angle of the 3-vector component.

T perp2() const;
Returns the transverse component squared of the 3-vector component. (R? in cylin-
drical coordinate system).

10 CLASS REFERENCE 10.7 StLorentzVector

Global Functions

Global Operators

T perp() const;
Returns the transverse component (R in cylindrical coordinate system).

T pseudoRapidity() const;

Returns the pseudo-rapidity, i.e. — In(tan §/2) of the vector. Note that this value
is only valid under the assumptions that the vector origins from the center of the
referring reference frame. Be also aware that this member function is not present
in the CLHEP LorentzVector class.

template<class X>

StLorentzVector<T> boost(const StLorentzVector<X> &pfr)
Returns boosted Lorentz vector. Here sel ¥ is the CM 4-momentum in the moving
frame and pfr is the 4-momentum of the moving frame in the lab. See Example 2
for a better understanding. Be also aware that this member function is not present
in the CLHEP LorentzVector class.

template<class T>
T abs(const StLorentzVector<T>& vec);
Returns the 4-vector invariant mass defined by:

7l = VE 7
Should the condition E2 < p? be met, the function returns:
7] = —V/=(B" =)
Same as vec->m(). Be also aware that this feature is not provided by CLHEP.

template<class T, class X>
StLorentzVector<T>
operator+ (const StLorentzVector<T>& vl,
const StlLorentzVector<X>& v2);
Returns the sum of v1 and v2. The type of the returned vector is determined by
the type argument of the first vector v1.

template<class T, class X>
StLorentzVector<T>
operator- (const StLorentzVector<T>& vl,
const StLorentzVector<xX>& v2);
Returns the v1 minus v2. The type of the returned vector is determined by the type
argument of the first vector v1.

template<class T, class X>
T operator* (const StLorentzVector<T>& vl,
const StLorentzVector<xX>& v2);
Returns the scalar product of v1 and v2. The type of the returned value is deter-
mined by the type argument of the first vector v1.

template<class T>
StLorentzVector<T>
operator* (const StLorentzVector<T>& vec,

55

10.7 StLorentzVector 10 CLASS REFERENCE

double c);
Returns vector vec multiplied by scalar c.

template<class T>
StLorentzVector<T>
operator* (double c,
const StLorentzVector<T>& vec);
Returns vector vec multiplied by scalar c.

template<class T, class X>

StLorentzVector<T>

operator/ (const StLorentzVector<T>& vec,
X c);

Returns vector vec divided by scalar c.

template<class T>
ostreamé&
operator<< (ostream& os,
const StlLorentzVector<T>& vec);
Prints vector vec to output stream os.

template<class T>
istream&
operator>> (istream& is,
StLorentzVector<T>& vec);
Reads vector vec from input stream is. Be also aware that this operator is not
provided by the CLHEP ThreeVector class.

Example 1 #incl ude "StLorentzVector. hh"

int main()
{
St Lor ent zVect or <doubl e> a;
St Lor ent zVect or <doubl e> b(1, 2, 3, 4);
St Lorent zVector<fl oat> c(b);
St Thr eeVect or <f | oat > q(MPlI,ME MLN2);
St Thr eeVect or <f | oat > r;

' << b << endl;
' << ¢ << endl;

cout << "b
cout << "c

/1 add two 4-vectors
a=b+c;
cout << "b + ¢ =" << a << endl;

/1 modify conponents of vector
c.set X(4);

c.setPz(1);

cout << "¢ = " << ¢ << endl;
/1 3 Vectors

r = b.vect();
cout << "q =" << q << endl;

56

10 CLASS REFERENCE 10.7 StLorentzVector

cout << "g.perp() =" << (g.perp()) << endl;

StFloat k = M PI;
St Lor ent zVect or <St Doubl e>(b. vect (), k) ;
cout << "k = " << k << endl;

/] scal ar product
double d = a*c;
cout << "a * ¢ =" << d << endl;

/1 mass
cout << "c.m() =" << c.m) << endl;

/] rapidity
cout << "c.rapidity() =" << c.rapidity() << endl;

return O;
}
Programs Output:

(4, 2, 1),4)

OO XOQOO0OTOOT
*IIE m . + 1 n
CT—0 W= —~—~0—~—~

=)

-~

&)

1

&

[N

Ul

A

w

(6]

.ra

Example 2 #incl ude <i ostream h>
#i ncl ude <cmat h>
#i ncl ude "Std obal s. hh"
#i ncl ude " St Lorent zVect or. hh"
#i ncl ude "SystenOf Units. h"
#i ncl ude "Physi cal Constants. h"
#i ncl ude "Randomi ze. h"

int main()

{

/! Generate 2-body decay: phi->e+e-

/1 This program generates a phi neson with random nonment um
/'l px, py, pz and lets it decay into two el ectrons. Their
// momenta are then boosted into the lab frane.

I

/1 Setup the random gener at or
I

HepJanmesRandom engi ne;

RandFl at rfl at(engine);

/1
// Create parent particle, here a phi(1020)

57

10.7 StLorentzVector

10 CLASS REFERENCE

58

/1w th momentum random nonenta 0-1 GeV/c
I
St Thr eeVect or <doubl e> p(rflat. shoot ()*CGeV,
rflat.shoot()*GeV,
rflat.shoot()*GeV);
St Lor ent zVect or <doubl e> parent (p, p. massHypot hesi s(1020*MeV));

cout << "parent particle: " << endl;
cout << "\t4-momentum " << parent << endl;
cout << "\tinvariant mass: " << abs(parent) << endl;

/1

/1 Let the phi decay into two el ectrons.

/1 The easiest way to do this is in the CMof the parent.

/1

doubl e massl = el ectron_mass_c2;

doubl e mass2 = el ectron_mass_c2;

doubl e massParent = abs(parent);

double E1 = (massParent*nmassParent + massl*massl - nmass2*nass2)/
(2. *massParent);

double E2 = massParent - EI;
double p1 = sqgrt((El + massl)*(El - massl));
doubl e p2 = sgrt((massParent*nmassParent - (massl+mass2) *

(massl+mass2)) *
(massPar ent *massPar ent - (mass1- mass2) *
(massl-mass2)))/ (2. *massParent);

/1
/1l Oientation in decaying particle rest frane
I

doubl e costheta
doubl e sintheta
doubl e phi

2*rflat.shoot() - 1;
sqrt((1 + costheta)*(1 - costheta));
2*pi *rflat.shoot();

/1

// Create daughters

I

St Thr eeVect or <doubl e> nonent un(p1*si nt het a*cos(phi),
pl*si nt het a*si n(phi),
pl*cost heta);

St Lor ent zVect or <doubl e> daught er 1(E1l, noment un ;

St Lor ent zVect or <doubl e> daught er 2(E2, - nonentun);

cout << "decay particles in CMfrane of parent: " << endl;
cout << "daughterl: " << endl;

cout << "\t4-momentum " << daughterl << endl;

cout << "\tinvariant nass: " << abs(daughterl) << endl;
cout << "daughter2: " << endl;

cout << "\t4-nmonmentum " << daughter2 << endl;

cout << "\tinvariant mass: " << abs(daughter2) << endl;

/1

/1 Boost secondary particles into the |lab
/1

daught er1 = daught er 1. boost (parent);
daught er2 = daught er 2. boost (parent);

10 CLASS REFERENCE

10.7 StLorentzVector

cout << "decay particles in lab frame: " << endl

cout << "daughterl: " << endl

cout << "\t4-nonentum " << daughterl << endl

cout << "\tinvariant mass: " << abs(daughterl) << endl
cout << "daughter2: " << endl

cout << "\t4-nonentum " << daughter2 << endl

cout << "\tinvariant mass: " << abs(daughter?2) << endl
I

/'l Cross-check: reconstruct parent from daughters

I

St Lor ent zVect or <doubl e> check = daught er 1+daught er 2
cout << "cross-check: reconstructed parent" << endl
cout << "\t4-momentum " << check << endl

cout << "\tinvariant mass: " << abs(check) << endl
return O

}

Programs Output:

parent particle
4-momentum ((995. 292, 363.878, 657.671),1611.19)
i nvariant mass: 1020

decay particles in CMfrane of parent

daught er 1:
4-momentum ((194. 897, 205.896, -423.936),510)
invariant mass: 0.510999

daught er 2
4-momentum ((-194.897, -205.896, 423.936),510)
invariant mass: 0.510999

decay particles in lab franme

daught er 1:
4-momentum ((688.868, 386.491, -97.5296), 795. 881)
invariant mass: 0.510999

daught er 2
4-momentum ((306. 425, -22.6126, 755.2), 815.313)
invariant mass: 0.510999

cross-check: reconstructed parent
4-nomentum ((995.292, 363.878, 657.671), 1611.19)
invariant mass: 1020

59

10.8 StLorentzVectorD 10 CLASS REFERENCE

10.8 StLorentzVectorD

Summary StLorentzVectorD is a non-template version of StLorentzVector<double>
(see 10.7). The code does not contain templates nor does it make use of the Stan-
dard C++ library. All data member are of type double.

Synopsis #include "'StLorentzVectorD.hh"
StLorentzVectorD;
Description The member functions, operators and non-member functions are identical to those

in StLorentzVector<T> but might be slightly slower in execution speed since

the inline mechanism cannot be used as extensive as for the template version. Oper-

ations can be mixed with the non-template single precision version StLorentzVectorF
and with StThreeVectorF, StThreeVectorD, StMatr ixF, and StMatrixD

but not with any instance of StLorentzVector<T>,StThreeVector<T>or
StMatrix<T>.. StLorentzVector<T> should be preferred where possible.

Related Classes StLorentzVectorD is similar to the templated version but is persistent capable in
ROOT. It does, however, not inherit from TObject.

Persistence Within the ROOT framework.

10.9 StLorentzVectorF

Summary StLorentzVectorF is a non-template version of StLorentzVector<float>
(see 10.7). The code does not contain templates nor does it make use of the Stan-
dard C++ library. All data member are of type Float.

Synopsis #include "StLorentzVectorF.hh"
StLorentzVectorF;
Description The member functions, operators and non-member functions are almost identical

to those of StLorentzVector<T> but might be slightly slower in execution
speed since the inline mechanism cannot be used as extensive as for the template
version. Operations can be mixed with the non-template double precision ver-

sion StLorentzVectorD and with StThreeVectorF, StThreeVectorD,
StMatrixF,and StMatrixD but not with any instance of StLorentzVector<T>,
StThreeVector<T>or StMatrix<T>.. StLorentzVector<T>should be
preferred where possible.

Related Classes StLorentzVectorF is similar to the templated version but is persistent capable in
ROOT. It does, however, not inherit from TObject.

Persistence Within the ROOT framework.

60

10 CLASS REFERENCE 10.10 StMath

10.10 StMath

Summary

Synopsis

Functions

StMath._hh is header file which contains declaration of various math function
which are not defined in the standard math library <cmath> (<math.h>) but are
useful for STAR offline purposes.

#include "StMath.hh"

double probChiSquared(double chi2, unsigned int n)

Computes the probability that a random variable, having a x2-distribution with n
> 1 degrees of freedom, assumes a value which is larger than a given value x2 > 0.
The algorithm was taken from the FORTRAN function prob () (CERNLIB G100).

61

10.11 StMatrix

10 CLASS REFERENCE

10.11 StMatrix

Summary

Synopsis

Description

Persistence

Related Classes

Public
Constructors

62

StMatrix is a templated class defining matrices and associated operations.

// for bound checking on access operator
#define MATRIX_BOUND_CHECK

#include "StMatrix.hh"

template<class T> StMatrix;

This class defines matrices of arbitrary dimension as well as associated operations
that can be performed on a single matrix or algebraic operations that combine ma-
trices. Its interface is modelled very closely to that of Matrix in CLHEP but it
is templated and can handle operations on matrices of different types. It extends
on the functionality of Matrix in CLHEP by allowing multiplication of a ma-
trix with a vector from the Standard C++ library as well as StThreeVector
and StLorentzVector from the Star Class Library (see Synopsis for required
define statements). The storage of the matrix elements is done by pointer instead
of using a Standard C++ or STL container to reduce overhead of the class. Unlike
CLHEP, no distinction is made between the various matrix types such as a symmet-
ric or diagonal matrix. This increases the memory required for the storage of some
matrices, however it greatly reduces the amount of code required. It also allows
the class to be completely non-virtual. For the storage of matrices in a data base,
this point may have to be addressed in the near future. The use of friends has
been greatly reduced in the mathematical operations and access functions accord-
ing to the Star Coding Guidelines have been included. The class retains a macro
definition from the CLHEP implementation to do bounds checking.

The template argument is used to define the type associated with the elements (i.e.
M;;) of the matrix. This argument must be one of the floating point number data
types available in the C++ language, either float, double, or long double.
The default type is double. These are also specified as: StFloat, StDouble,
or StLongDouble in the STAR CLASS LIBRARY. It should be noted that the
member function swap () which swaps two matrices only works with matrices of
the same type.

None

Class StMatrix is a base class that may be used to derive a StRotation class and a
StBoost class in the near future.

StMatrix<DataType>();
Constructs a matrix with zero rows and zero columns.

StMatrix<DataType>(size_t p, size_t q, size_t init=0);
Constructs a matrix with p rows and g columns. By default all the elements within
the matrix are initialized to 0. If init=1, and the matrix is NxN, the diagonal
elements are initialized to 1 (i.e. the identity matrix). If init is specified as 1 and
the matrix is not square, the elements are all initialized to 0.

10 CLASS REFERENCE 10.11 StMatrix

Public Member
Operators

template<class X>

StMatrix<DataType>(const StMatrix<x>& ml)

Copy Constructor. Constructs a matrix with the contents of m1. Note that m1 can
be an object with different template arguments then self, i.e. one can instantiate a
matrix of type doubl e with an matrix of type float and vice versa.

template<class X>

StMatrix<DataType>

operator= (const StMatrix<xX>& ml);

Assignment operator. Replaces the contents of self with the contents of m1. Note
that m1 can be an object with different template arguments then self, i.e. one can
assign a matrix of type double to a matrix of type Float and vice versa.

T operator() (size t i, size_t j) const;

Returns components by index. Note that 1<i<p where p is the number of rows
and 1<j<q where g is the number of columns in the matrix. The result for indices
outside these boundaries is platform dependent. If the compiler supports exception
handling and ST_USES_EXCEPT I0ONS is defined, an out_of_range exception is
thrown, otherwise a messages is printed to cerr alerting the user to an out_of range
condition.

T operator() (size t i, size_ t j);

Assigns components by index. Note that 1<i<p where p is the number of rows
and 1<j<q where g is the number of columns in the matrix. The result for indices
outside these boundaries is platform dependent. If the compiler supports exception
handling and ST_USES_EXCEPT I0ONS is defined, an out_of_range exception is
thrown, otherwise a messages is printed to cerr alerting the user to an out_of range
condition.

T operator[] (size_t c) const;

Allows C style access to elements of a matrix.

Indices run from 0<c<(p-1) where p is the number of rows
and 0<c<(g-1) where q is the number of columns.

T operator[] (size_t c);

Allows C style assignment to elements of a matrix.

Indices run from 0<c<(p-1) where p is the number of rows
and 0<c<(g-1) where q is the number of columns.

StMatrix<DataType>&
operator*= (double t);
Multiplies each element of self by the scalar t and returns self.

StMatrix<DataType>&
operator/= (double t);
Divides each element of self by the scalar t and returns self.

template<class X>
StMatrix<DataType>&

operator+= (const StMatrix<xX>& m2);
Adds matrix m2 to self and returns self.

63

10.11 StMatrix

10 CLASS REFERENCE

Public Member
Functions

64

template<class X>
StMatrix<DataType>&

operator-= (const StMatrix<X>& m2);
Subtracts matrix m2 from self and returns self.

StMatrix<DataType> operator+ ();
Unary plus. Returns a copy of self.

StMatrix<DataType> operator- ();
Unary minus. Returns a copy of self with all components negated.

template<class X>
bool operator== (const StMatrix<X>& ml);
Equality check. Returns true if self equals m1 else False.

template<class X>
bool operator!= (const StMatrix<X>& ml);
Inequality check. Returns true if self is not equal to m1 else false.

StMatrix provides 6 access functions for data members:

unsigned int numRow();
Returns the number of rows in self. Note this is not a CLHEP member function.

unsigned int num_row();
Returns the number of rows in self. Note this is provided to be backward compati-
ble with CLHEP.

unsigned int numCol();
Returns the number of columns in self. Note this is not a CLHEP member function.

unsigned int num_col();
Returns the number of columns in self. Note this is provided to be backward com-
patible with CLHEP.

unsigned int numSize();
Returns the number of elements in self. Note this is not a CLHEP member function.

unsigned int num_size();
Returns the number of elements in self. Note this is provided to be backward
compatible with CLHEP.

Access to the elements of the matrix are only provided via the operators () and []
as specified above.

StMatrix<DataType>
dot(StMatrix<DataType >& m2);
Returns a matrix that is the product of self and m2. Analogous to the *= operator.

StMatrix<DataType>
apply(DataType (*f)(DataType, size t, size t)) const;
Applies a user defined function (*f) to each element with the matrix.

const StMatrix<DataType> T() const;
Returns the transpose of self.

10 CLASS REFERENCE 10.11 StMatrix

Global Operators

const StMatrix<DataType> transpose() const;
Returns the transpose of self by calling T(). Note this is not a CLHEP member
function.

StMatrix<DataType>
sub(size_t i, size t ii, size_t j, size t jj) const;
Returns a sub matrix of self of dimension (ii-i+1)x (jj-j+1) by specifying the mini-
mum (i) and maximum (ii) row and the the minimum (j) and maximum (jj) column.
void sub(size_t row, size t col,

const StMatrix<DataType> &ml);
Replaces the sub matrix specified by rowxcolumn with the matrix m1. Note that
the matrix and the sub matrix must be of the same type.

StMatrix<DataType> inverse(size_t& ierr) const;
Returns a matrix that is the inverse of self. 1err is a status variable that is zero
when successful and is one (1) when the matrix is singular.

virtual void invert(size_t& ierr);
Replaces self with its inverse. 1err is a status variable that is zero when successful
and is one (1) when the matrix is singular.

DataType determinant() const;
Returns the determinant of the self.

static void swap(size_t&, size t&);

Utility member function for

swap(StMatrix<DataType>&, StMatrix<DataType>&) . Interchanges
the number of rows and columns.

static void swap(DataType *&, DataType *&);

Utility member function for

swap(StMatrix<DataType>&, StMatrix<DataType>&). Interchanges
the elements.

friend void

swap(StMatrix<DataType>& ml, StMatrix<DataType>& m2);
Interchanges matrix m1 with m2. Note that only matrices of the same DataType
may be exchanged.

template<class DataType, class X>

StMatrix<DataType> operator*

(const StMatrix<DataType>& ml, const StMatrix<X>& m2);
Returns the product of m1 and m2. The matrices may be of different types, but the
return type is that of the first argument. Bounds checking is done by default.

template <class DataType, class X>
vector<DataType>
operator*(const StMatrix<xX>& mi,

const vector<DataType>& V)
Multiplication of a matrix (m1) with a vector (v) from the Standard C++ library
Returns a vector of the same type as the vector that is used in the operation. Bounds
checking is done by default.

65

10.11 StMatrix

10 CLASS REFERENCE

66

template <class DataType, class X>

vector<DataType>

operator*(const vector<DataType>& v,
const StMatrix<X>& ml)

Same as above with different ordering

template <class DataType, class X>
StThreeVector<DataType> operator™

(const StMatrix<xX>& mi,

const StThreeVector<DataType>& v3)

Multiplication of a matrix with a StThreeVector from the Star Class library. Returns
a StThreeVector of the same type as the StThreeVector that is used in the operation.
Bounds checking is done by default.

template <class DataType, class X>
StThreeVector<DataType>operator*
(const StThreeVector<DataType>& v3,
const StMatrix<X>& ml)

Same as above with different ordering

template <class DataType, class X>
StLorentzVector<DataType>operator*

(const StMatrix<xX>& mi,

const StlLorentzVector<DataType>& v4)

Multiplication of a matrix with a StLorentz\ector from the Star Class library. Re-
turns a StLorentzVector of the same type as the StLorentz\ector that is used in the
operation. Bounds checking is done by default.

template <class DataType, class X>

StLorentzVector<DataType>operator>
(const StLorentzVector<DataType>& v3
const StMatrix<X>& ml)

Same as above with different ordering

template<class DataType, class X>
StMatrix<DataType>operator+

(const StMatrix<DataType>& ml,const StMatrix<xX>& m2)
Returns the sum of m1 and m2. Bounds checking is done by default.

template<class DataType, class X>
StMatrix<DataType>operator-

(const StMatrix<DataType>& ml,const StMatrix<xX>& m2)
Returns the difference of m1 and m2 matrices. Bounds checking is done by default.

template<class DataType>

ostream&

operator<<(ostream& s, const StMatrix<DataType>& Q)
Prints a formatted matrix to stdout.

template<class DataType>
DataType norm_infinity(const StMatrix<DataType>& ml)

10 CLASS REFERENCE 10.11 StMatrix

Examples

Returns the sum of the column whose element have the largest sum in the matrix

ml.

template<class DataType>
DataType norml(const StMatrix<DataType>& ml)
Returns the sum of the row whose element have the largest sum in the matrix m1.

#i ncl ude "Std obal s. hh"

#defi ne MATRI X_BOUND_CHECK
#i nclude "StMatrix. hh"

tenpl ate <class X>
X hol d1(X a, unsigned int r, unsigned int q)

{
}

int

{

return a*a;

mai n()
St Mat ri x<St Doubl e> A(2, 2,1);

A(1, 1)
A1, 2)
A(2, 1)
A(2,2)

aermN

1

cout << "A=" << A << endl;

St Mat ri x<St Fl oat> B(2, 2);

B(1,1) = O
B(1,2) = 1;
B(2,1) = 1;
B(2,2) = 0;

cout << "-B=" << -B;
St Mat ri x<St Fl oat > C(A);

cout << "C=" << C
cout << "A=" << G

C+=C,
cout << "C+=C =>" << C << endl;

cout << "C" << G

C = BtA;
cout << "C=B+A:" << C << endl;

unsigned int ierr;
cout << "B.inverse(ierr)" << B.inverse(ierr) << endl;

St Mat ri x<St Doubl e> | DENTI TY(2, 2, 1) ;

C = B*B.inverse(ierr);

67

10.11 StMatrix 10 CLASS REFERENCE

i f (C == | DENTITY)

cout << "C=B*B.inverse(ierr) == IDENTITY" << endl;
el se

cout << "oops.." << endl;

cout << "1st row of C' << endl;
cout << C.sub(1,1,1,2) << endl;

St Mat ri x<St Doubl e> K(3, 3,1);

K(1,3) = 2;
K(2,1) = -2;
K(1,3) = -1;

cout << "K=" << K << endl;

St Matrix<> TT;
TT = K appl y(hol d1);
cout << "square each elenment of K =" << TT << endl;

St ThreeVector<> a(1,1,1);

cout << "StThreeVector a= " << a << endl;
cout << "a*K=" << a*K << endl;

cout << "Kra=" << K*a << endl;

try {
cout << "K*A=" << endl;
cout << (K*A) << endl;

}
catch(exception &e){
cout << e.what() << endl;

}
return O;
}
Programs Output:
A=
2 1
0 5
-B=
0 -1
-1 0
C=
2 1
0 5
A=
2 1
0 5
C+=C =>
4 2
0 10
c
4 2

68

10 CLASS REFERENCE 10.11

StMatrix

0 10
C=B+A:
2 2
1 5
B.inverse(ierr)
0 1
1 0
C=B*B.inverse(ierr) == | DENTITY
1st row of C
1 0
K=
1 0 -1
-2 1 0
0 0 1
square each el ement of K =
1 0 1
4 1 0
0 0 1

St ThreeVector a= (1, 1, 1)

a*K=(-1, 1, 0)

K*a=(0, -1, 1)

K* A=

St Mat ri x<doubl e>: : dot () Inconpatible matrix sizes

69

10.12 StMatrixD 10 CLASS REFERENCE

10.12 StMatrixD

Summary StMatrixD is a non-template version of StMatrix<double> (see 10.11). The
code does not contain templates nor does it make use of the Standard C++ library.
All data member are of type doubl e.

Synopsis #include "StMatrixD.hh"
StMatrixD;
Description The member functions, operators and non-member functions are almost identical

to those in StMatrix but might be slightly slower in execution speed since the in-

line mechanism cannot be used as extensive as for the template version. Opera-

tions can be mixed with the non-template single precision version StMatrixF

and with StThreeVectorF, StThreeVectorD, StLorentzVectorF, and
StLorentzVectorD but not with any instance of StMatrix<T>, StThreeVector<T>
or StLorentzVector<T>.. Operations with STL based containers are not im-
plemented. StMatrix<T> should be preferred where possible.

Related Classes StMatrixD is similar to the templated version but is persistent capable in ROOT. It
does, however, not inherit from TObject.

Persistence Within the ROOT framework.

10.13 StMatrixF

Summary StMatrixF is a non-template version of StMatrix<float> (see 10.11). The
code does not contain templates nor does it make use of the Standard C++ library.
All data member are of type float.

Synopsis #include "StMatrixF._hh"
StMatrixF;
Description The member functions, operators and non-member functions are almost identical

to those of StMatrix but might be slightly slower in execution speed since the in-

line mechanism cannot be used as extensive as for the template version. Opera-

tions can be mixed with the non-template double precision version StMatrixD

and with StThreeVectorF, StThreeVectorD, StLorentzVectorF, and
StLorentzVectorD but not with any instance of StMatrix<T>, StThreeVector<T>
or StLorentzVector<T>.. Operations with STL based containers are not im-
plemented. StMatrix<T> should be preferred where possible.

Related Classes StMatrixF is similar to the templated version but is persistent capable in ROOT. It
does, however, not inherit from TObject.

Persistence Within the ROOT framework.

70

10 CLASS REFERENCE 10.14 StMemoryinfo

10.14 StMemorylnfo

Summary

Synopsis

Description

Public
Constructors

Public Member
Functions

Example

Provides information on the memory allocator.

#include "StMemorylnfo.hh"
class StMemorylnfo;

Provides instrumentation describing space (memory) usage. The class is imple-
mented as a singleton. The obtained information is platform dependent because
of the different ways memory is allocated and managed by the different compilers
and architectures. All memory information is obtained through a mallinfo()
system call (usually in malloc.h).

The class is not functional on SUN (CC4.2). It will nevertheless compile and link
but will provide no memory statistics.

StMemoryInfo is a singleton and therefore has no public constructor. The only way
to obtain an instance, (or better an pointer to the only instance) of StMemorylInfo
is through the static member function instance().

static StMemorylnfo* instance();
Returns pointer to the only instance of StMemoryInfo.

void snapshot();
Take a snapshot of the current memory usage.

void print(ostream& = cout);
Prints the memory usage as recorded by the snapshot() member function. The
output is platform dependent. In any case the difference to the previous snapshot is
printed as well.
#i ncl ude " St Menoryl nf o. hh"
int main()
{
char *buf[2];
St Menorylnfo *info = StMenoryl nfo::instance()

i nf o- >snapshot () ;
info->print();

buf [0] = new char[10000] ;
cout << "\n===> 10000 bytes allocated\n" << endl

i nf o- >snapshot () ;
info->print();

buf[1] = new char[10000];
cout << "\n===> 10000 bytes allocated\n" << endl

i nf o- >snapshot () ;
info->print();

return O

71

10.14 StMemorylInfo 10 CLASS REFERENCE

}
Programs Output (Linux):

---------- Menmory Status (snapshot #1) ----------

total space allocated fromsystem 2832 (+0)
nunber of non-inuse chunks 1 (+0)
nunber of mrapped regi ons 0 (+0)
total space in nmapped regions 0 (+0)
total allocated space 88 (+0)
total non-inuse space 2744 (+0)
top-nost, rel easabl e space 2744 (+0)

===> 10000 bytes allocated

---------- Menory Status (snapshot #2) ----------

total space allocated fromsystem 15120 (+12288)
nunber of non-inuse chunks 1 (+0)

nunber of mrapped regi ons 0 (+0)

total space in nmmapped regions 0 (+0)

total allocated space 10096 (+10008)
total non-inuse space 5024 (+2280)
top-nost, rel easabl e space 5024 (+2280)

===> 10000 bytes allocated

---------- Menory Status (snapshot #3) ----------

total space allocated fromsystem 27408 (+12288)
nunber of non-inuse chunks 1 (+0)

nunber of mmapped regi ons 0 (+0)

total space in mapped regions 0 (+0)

total allocated space 20104 (+10008)
total non-inuse space 7304 (+2280)
top-nost, rel easabl e space 7304 (+2280)

72

10 CLASS REFERENCE 10.15 StMemoryPool

10.15 StMemoryPool

Summary

Synopsis

Description

Public
Constructors

Public Member
Functions

Utility class which can be used to allocate a large number of small objects effi-
ciently.

#include "StMemoryPool .hh"
class StMemoryPool(size_t);

The idea is taken from: B. Stroustrup, The C++ Programming Language, third
edition, Chapter 19.4.2 (page 570).

The class should be used if a large number of small objects has to be frequently al-
located from heap. It is much more efficient and faster than the standard new/delete
mechanism. Memory gets allocated in larger chunks and partitioned according to
the size of the objects. The class manages the memory itself avoiding too frequent
usage of new/delete (malloc/free). On order to use StMemoryPool the referring
class (here called X) must be modified by adding the following lines:

// in the header file X_.h

class X {

public:
void* operator new(size_t) { return mPool.alloc(Q); }
void operator delete(void* p) { mPool.free(p); }
// ...

private:
static StMemoryPool mPool;

}

// in the source file X.cc (X.cxx)
StMemoryPool X::mPool(sizeof(X));

Note, that the size of the class X does not increase sonce the pool is contained as a
static member.

Only single objects may be created, i.e, new X[100] will not work; however, in
these cases the default operators new/delete will be called.

StMemoryPool (unsigned int n);
Creates a memory pool for objects of size n. The best way is to call the constructor
as follows:

StMemoryPool mPool (sizeof(X));

void* alloc();
Returns memory to hold one element.

void free(void*);
Put the memory of one element back in the pool.

73

10.16 StPhysicalHelix 10 CLASS REFERENCE

10.16 StPhysicalHelix

Summary

Synopsis

Description

Persistence

Related Classes

Public
Constructors

Public Member
Functions

74

StPhysicalHelix describes the trajectory of a charged particle in a uniform mag-
netic field. While its base class StHelix represents only the mathematical model
StPhysicalHelix provides additional access to physical quantities associated with a
particles trajectory, e.g. charge and momentum.

#include "StPhysicalHelix.hh"
class StPhysicalHelix;

Other than StHelix instances of StPhysicalHelix can be created from known phys-
ical quantities as charge and momentum of a trajectory in a magnetic field. The
same values can also be returned from StPhysicalHelix even if the object was in-
stantiated with mathematical parameters (curvature, dip angle, phase, origin and
orientation).

No equivalent class exists in CLHEP.

In the following only those methods are described which are specific to StPhysical-
Helix are described in the following. For a full description of StHelix see section
10.5.

None

Class StPhysicalHelix is derived from StHelix which defines the underlying math-
ematical model.

StPhysicalHelix(const StThreeVector<double>& p,

const StThreeVector<double>& o,

double B, double q);
Constructs a helix with for a given momentum p, origin o, magnetic field B, and
charge q.

Don’t forget to multiply the arguments with the units there are in. The units are
defines in SystemOfUnits.h (see 9.3).

StPhysicalHelix(const StPhysicalHelix& hix);
Copy Constructor. Constructs a helix with the content of hlx.

StThreeVector<double> momentum(double B) const;

Returns the momentum at the origin of the helix for a given magnetic field B.
The sign of B is relevant. Note that the actual origin can be obtained from the
origin() member function.

Don’t forget to provide the units when you pass the field. For example 0 .5*tesla.
The units are defines in SystemOfUnits.h (see 9.3).

StThreeVector<double> momentumAt(double s, double B);
Returns the momentum at pathlength s for a given magnetic field B. Note that the
sign of B is relevant. Note that the actual position at pathlength s can be obtained
from the at () member function.

10 CLASS REFERENCE 10.16 StPhysicalHelix

Examples

Don’t forget to provide the units when you pass the field. For example 0 .5*tesla.
The units are defines in SystemOfUnits.h (see 9.3).

int charge(double B) const;

Returns the charge of the trajectory for a given magnetic field B. Note that the sign
of B is relevant. Don’t forget to provide the units when you pass the field. For
example 0.5*tesla. The units are defines in SystemOfUnits._h (see 9.3).

#i ncl ude " St Physi cal Hel i x. hh"

int main(int, char?*)

{
St Thr eeVect or <doubl e> p(1*CGeV, 1.2*GeV, 0.03*GeV);
St Thr eeVect or <doubl e> o; // defaults to (0,0,0)
const double B = 0.5*tesl a;
const double q -1;

cout << "Creating helix with:" << endl;
cout << "monentum =" << p << endl;
cout << "origin " << 0 << endl;
cout << "charge << q << endl;
cout << "B field << B << endl;

St Physi cal Hel i x track(p, o, B, q);

cout << "The helix paranmeters are:" << endl;
cout << track << endl;

cout << "Scanning froms=0 to s=2 m" << endl;

for (double s=0; s<=2*meter; s+=40*centineter) {
p = track. monentumit (s, B);
cout << "s=" << s <" Mt << "\t->p =" << p
<< " MRV << "\t | p|] =" << abs(p) << endl;
}

return O;

}
Programs Output:

Creating helix wth:
nmonment um = (1000, 1200, 30)

origin = (0, 0, 0
char ge =-1

B field = 0.0005
The helix paraneters are

(curvature = 9.59612e-05, dip angle = 0.0192032

phase = -0.694738, h =1, origin = (0, 0, 0))
Scanning froms=0 to s=2 m

s=0 mm -> p = (1000, 1200, 30) MeV | p| = 1562.34
s=400 nNm -> p = (953.222, 1237.48, 30) MeV |p| = 1562.34
s=800 mMm -> p = (905.04, 1273.15, 30) MeV | p| = 1562.34
s=1200 nm -> p = (855.526, 1306.93, 30) MeV |p| = 1562.34
s=1600 nm -> p = (804.752, 1338.8, 30) MV | p| = 1562.34
s=2000 nm -> p = (752.792, 1368.69, 30) MeV |p| = 1562.34

75

10.17 StPhysicalHelixD 10 CLASS REFERENCE

10.17 StPhysicalHelixD

Summary

Synopsis

Description

Related Classes

Persistence

76

StPhysicalHelixD is similar to StPhysicalHel i x (see 10.16) but does not con-
tain or use templates nor does it make any use of the Standard C++ library.

#include "StPhysicalHelixD.hh"
StPhysicalHelixD;

The member functions, operators and non-member functions are identical to those
of StPhysicalHelix with the exception that whenever StPhysicalHelix re-
turns a StThreeVector<double> a StThreeVectorD is returned. The
STL structure pair<double, double> used in this context is replaced by a
similar but non-template structure pairD. The templated version should be pre-
ferred where possible.

StPhysicalHelixD is derived from StHelixD. StPhysicalHelixD inherits also from
TObject (through StPhysicalHelixD) if the SCL was compiled with the __ROOT __
flag set.

Within the ROOT framework.

10 CLASS REFERENCE 10.18 StPrompt

10.18 StPrompt

Summary
Synopsis

Description

Syntax

Examples

StPrompt is a templated function to prompt the user for input of various type.
#include "StPrompt.hh"

Template function to prompt the user for input of type T. Reads the new input value,
except if <CR> is pressed directly after the prompt. In this case the previous value
(indicated in brackets) stays untouched.

This function is essentially useful for debugging purposes and in small programs
(prototyping) where user input is required.

void StPrompt(const char* txt,T& var);

Prompt for a value of type T. The prompt string includes the given text txt and
the current value of var in square brackets (default value). The new input value is
assigned to var except if <CR> is pressed directly after the prompt string in which
case the content of var is not altered. For non-build-in data types make sure the
input and output operators << and >> are defined. (Note, that both operators are
defined for StThreeVector!)

In addition to the more general version a few specializations are provided:

void StPrompt(const char* txt, bool& var);

In this case the functions accepts true, t, yes, y, on, 1 as true. Everything else
yields False (except <CR>).

Note: On Sun platforms the native CC compiler does not provide bool as funda-
mental type and is therefore implemented as type int. As a consequence

void StPrompt(const char* txt, bool& var);

cannot be distinguished from

void StPrompt(const char* txt, int& var);.

On Sun platforms (STAR_SYS=sun4x*) this specializations is disabled and re-
placed by: void StBoolPrompt(const char* txt, bool& var);

void StPrompt(const char *txt, char* var, int len);
Prompts for a C-like character string. In this case the length of the array has to be
passed in order to prevent memory violations °.

void StPrompt();
Prints ”— Press return to continue — ” on the screen and waits until <CR> is pressed.

#i ncl ude " St Pronpt . hh"
#i ncl ude " St Thr eeVect or. hh"
#i ncl ude <string>

int main()

{
St ThreeVector<fl oat> vec2(1, 2, 3);
St Pronpt ("Enter new 3-vector", vec2);
cout << "new value: " << vec2 << endl;

6The STL st ri ng class should always be preferred over C-like character strings.

77

10.18 StPrompt 10 CLASS REFERENCE

string filename("var.cc");
char ot hernane[16] = "short.c";
doubl e var = 1/3.;

bool answer = true;
while (answer) {
StPronpt ("Enter file nane", filenane);

cout << "new value: " << filenane << endl;
St Pronpt ("Enter other name", othernane, 16);
cout << "new value: " << othernane << endl;

St Pronpt ("any nunber", var);
cout << "new value: " << var << endl;

St Pronpt ("nore questions", answer);

}

St Pronpt () ;
cout << "bye" << endl;
return O;

}

Programs Output:

Enter new 3-vector [(1, 2, 3)]: 9 9 9<CR>
new val ue: (9, 9, 9)

Enter file nane [var.cc]: <CR>

new val ue: var.cc

Enter other nane [short.c]: |ong.c<CR>
new val ue: |ong.c

any nunber [0.333333]: 8.4<CR>

new val ue: 8.4

nore questions [true]: n<CR>

-- Press return to continue --<CR>

bye

78

10 CLASS REFERENCE 10.19 StRandom

10.19 StRandom

Summary

Synopsis

Description

Persistence

StRandom is an interface to the various random generators provided by CLHEP
(see 10.25). It eases their use and avoids common problems. It is not intended not
provide the full functionality of all the related CLHEP classes but the most common
ones.

#include ""StRandom.hh™
class StRandom;

CLHEP provides a rich set of random generators and random engines which can
be mixed freely (see 10.25). However, their use is sometimes cumbersome and
error-prone. The aim of StRandom is to provide an interface’ which is simple to
use and appropriate for most standard applications. No new algorithm is added; all
methods are simple access functions. Only the most commonly used methods are
interfaced. For example the generation of arrays of random numbers is omitted. If
you need these features you have to use the original classes directly.

StRandom allows to generate all kinds of distributions (flat, Gaussian, Poissonian,
exponential, and Breit-Wigner) without switching classes as one has to do with in
CLHEP.

All internal engines and generators used in StRandom are kept as static data mem-
bers and so are all methods. This allows their use without explicitly creating an
instance of StRandom. For example, to generate a flat and a Gaussian random
number you can either use:

StRandom rndm;
cout << rndm.flat() << endl;
cout << rndm.gauss(l, 0.3) << endl;

or without creating an instance explicitly:

cout << StRandom::flat() << endl;
cout << StRandom::gauss(1.7,0.3) << endl;

StRandom uses internally the most advanced random engine available, the Ran-
luxEngine.

Note, that you are able to use StRandom everywhere in your code withour having
to worry about getting the same series of random numbers. This happens if you
create an instances of the CLHEP ’engines’ locally, e.g. in a function which you
invoke several times. The proper way to deal with CLHEP random generators is to
have the engine in global scope and then create instances of the generators with the
global engine as arguments.

None

7In terms of “Design Patterns” St Randomis a “Facade”.

79

10.19 StRandom 10 CLASS REFERENCE

Related Classes StRandom uses internally the following classes: RanluxEngine, RandFlat,
RandBreitWigner,RandExponential, RandGauss, and RandPoisson.

Public StRandom() ;

Constructors Constructor. Not needed (see example) unless you don’t like the StRandom: : Flat()
syntax.

Public Member static void setSeed(long seed);

Functions Set the seed for the Ranlux engine. Ranlux internally translates this to a 24 words

seed. Note that, since the engine is a static member, the seed is set for all instances
used in the application.

static double flat();

static double flat(double w);

static double flat(double a, double b);

static long flatint(long n);

static long flatint(long m, long n);

static double exponential();

static double exponential (double mean);

static double gauss(Q);

static double gauss(double mean, double stdDev);

static long poisson(double mean);

static double breitWigner(double a=1.0, double b=0.2);
static double breitWigner(double a, double b, double c¢);
static double breitWignerM2(double a=1.0, double b=0.2);
static double breitWignerM2(double a, double b, double c);
Static methods to generate random numbers according to various distributions. All
are implemented as inline functions and simply call the referring CLHEP methods.

Examples #i ncl ude <i ostream h>
#i ncl ude " St Random hh"
#include "Std obal s. hh* // for PR() macro
int main()
St Random rndm
int i
const int n = 1;

rndm set Seed(101) ;

for (i=0; i<n; i++) PR(rndmflat());

for (i=0; i<n; i++) PR(rndm flat(2));

for (i=0; i<n; i++) PR(rndm flatlnt(10));

for (i=0; i<n; i++) PR(rndm flatlnt (20, 30));
for (i=0; i<n; i++) PR(rndm flat(1l, 2));

for (i=0; i<n; i++) PR(rndm exponential ());

for (i=0; i<n; i++) PR(rndm exponenti al (123.));
for (i=0; i<n; i++) PR(rndm gauss());

for (i=0; i<n; i++) PR(rndm gauss(10, 1.67));
for (i=0; i<n; i++) PR(rndm poi sson(6.4));

St Random : set Seed(1001) ;

80

10 CLASS REFERENCE 10.20 StTemplates

for (i=0; i<n; i++) PR(St Random : flat());
for (i=0; i<n; i++) PR(St Random : fl at(2));
for (i=0; i<n; i++) PR(St Random : flat(1, 2));
for (i=0; i<n; i++) PR(St Random : fl atInt (10));
for (i=0; i<n; i++) PR(St Random : fl at I nt (20, 30));
for (i=0; i<n; i++) PR(St Random : exponenti al ());
for (i=0; i<n; i++) PR(St Random : exponenti al (123.));
for (i=0; i<n; i++) PR(St Random : gauss());
for (i=0; i<n; i++) PR(St Random : gauss(10, 1.67));
for (i=0; i<n; i++) PR(St Random : poi sson(6. 4));
return O

}

Programs Output:

rndmflat() = 0.995292

rndmflat(2) = 0.727757
rndmflatint(10) = 6

rndm fl atlnt(20,30) = 20
rndmflat(1, 2) = 1.12937

rndm exponential () = 0.80462

rndm exponential (123.) = 21.5562
rndm gauss() = 0.499951

rndm gauss(10, 1.67) = 9.49933
rndm poi sson(6.4) =9

St Random : flat() = 0.0506576

St Random : flat(2) = 1.71778

St Random :flat(1, 2) = 1.87986

St Random : flatlnt(10) = 4

St Random : fl at | nt (20, 30) = 24

St Random : exponential () = 0.614351
St Random : exponenti al (123.) = 17.5155
St Random : gauss() = -0.12305

St Random : gauss(10, 1.67) = 11.2643
St Random : poi sson(6.4) = 4

10.20 StTemplates

Summary

Synopsis

Description

StTemplates is a header file needed on old cfront compilers to avoid unresolved
symbols when linking with the SCL library.

#include "StTemplates.hh"

If you are using an old cfront compiler who still uses template databases or
repositories you might encounter unresolved symbols when linking with the SCL
library. In order to avoid this problem one has to include StTemplates._hh once
somewhere in the application. The only known platform where this is necessary is

SUN with the CC4 compiler. Note, that one also has to set the ST_SOLVE_TEMPLATES
flag in order to enable the template instatiation. This allows the use of StTemplates.hh
also on non-cfront compilers. By setting or omitting this macro in the referring
Makefile one can selectively switch the forced instantiation on and off.

81

10.21 StThreeVector

10 CLASS REFERENCE

10.21 StThreeVector

y
A
Y0

”””””””” ' perp()
o mag() |
A S |
RN phi() |
a0 /I b) A x() X
1 N -
20 ”

Figure 10.1: Components of three vector: z,y, z - basic components, 8 - azimuth angle, ¢ - polar angle,

mag = \/x% + y? + 22

Summary
Synopsis

Description

82

- magnitude, perp = v/x2 + y? - transverse component.

StThreeVector is a templated general 3-vector class defining vectors in three di-
mension (see Fig. 10.1).

#include "'StThreeVector._hh"
template<class T> StThreeVector;

This class defines a general 3-vector which can be used to represent space points
and 3-momenta. It has a large set of member functions, member operators and
associated global operators which allow to multiply, subtract and add vectors with
other vectors or scalar variables, calculate cross products and angles between vec-
tors, and much more. Once defined its coordinates can be obtained in Cartesian,
cylindrical and spherical representation. Its interface is essentially the same as
ThreeVector in CLHEP with two significant differences: (i) it is templated vec-
tor and (ii) it is a concrete class, i.e. it is not derived from any other class. It
offers essentially the same functionality as the CLHEP version but is more flexible
in terms of precision and storage optimisation; i.e. in order to minimize for mem-
ory and storage volume a StThreeVector’s with type argument Float can be
used but easily transformed into a double precision version for computation when

10 CLASS REFERENCE 10.21 StThreeVector

Persistence

Related Classes

Public
Constructors

Public Member
Operators

higher accuracy is needed. In addition to the CLHEP version there are a few mem-
ber functions added which are useful in the context of Heavy-lon Physics such as
pseudoRapidity().

The template argument is used to define the type associated with the X, y, z compo-
nents. This argument must be one of the floating point number data types available
in the C++ language, either float, double, or long double. The default
type is double.

Please note that StThreeVector is not virtual. This is a compromise in order
to minimize the storage size, i.e. to avoid the additional ballast of the virtual table
pointer.

None

Class StLorentzVector is derived from StThreeVector defining a 4-dimensional
Lorentz vector.

StThreeVector<T>();
Constructs a 3-vector with all components initialized to 0.

StThreeVector<T>(T x, Ty, T 2);
Constructs a 3-vector with given components x, y and z.

template<class X>

StThreeVector<T>(const X *avec)

Constructs a 3-vector from a given array avec of type X (usually Float or
double). This is especially useful when a C-style array has to be transformed
into a StThreeVector. No checks on the array bounderies can be made. It is up to
the user to make sure that the array has the correct size.

template<class X>

StThreeVector<T>(const StThreeVector<X> &vec)

Copy constructor. Constructs a 3-vector with the content of vec. Note that vec
can be an object with different template arguments then self, i.e. one can instantiate
a vector of type doub I e with an vector of type float and vice versa.

template<class X>

StThreeVector<T>

operator= (const StThreeVector<X> &vec);

Assignment operator. Replaces the content of self with the content of vec. Note
that vec can be an object with different template arguments then self, i.e. one can
assign a vector of type doubl e to a vector of type Float and vice versa.

T& operator() (size t i);

T operator() (size_t i) const;

Returns components by index. The first version can be used also as Ivalue. Note
that the first index (the x-component) has index 0. The result for indices > 2 is plat-
form dependent. If the compiler supports exception handling an out_of_range
exception is thrown.

83

10.21 StThreeVector 10 CLASS REFERENCE

T& operator[] (size t i);

T operator[] (size_t i) const;

Same as operator () above.

StThreeVector<T> operator- ();

Unary minus. Returns copy of self with all components negated.
StThreeVector<T> operator+ ();

Unary plus. Returns copy of self.

StThreeVector<T>&

operator*= (double c¢);

Returns self multiplied by scalar c.

StThreeVector<T>&

operator/= (double c¢);

Returns self divided by scalar c.

template<class X>

bool

operator== (const StThreeVector<X>& vec);
Equality check. Returns true if self equals vec else false.
template<class X>

bool

operator!= (const StThreeVector<X>& vec);
Inequality check. Returns true if self is not equal to vec else false.

Public Member void setX(T x);
Functions Set the x-component in Cartesian coordinate system.

void setY(T y);

Set the y-component in Cartesian coordinate system.
void setzZ(T z);

Set the z-component in Cartesian coordinate system.
void setPhi(T ph);

Set the azimuthal angle in spherical coordinate system

void setTheta(T ph);
Set the polar angle in spherical coordinate system.

void setMag(T r);
Set the magnitude of the vector keeping the polar and azimuthal angles constant.

void setMagnitude(T r);
Set the magnitude of the vector keeping the polar and azimuthal angles constant.

T x() const;
Returns the x-component in Cartesian coordinate system.

T y() const;
Returns the y-component in Cartesian coordinate system.

T z() const;
Returns the z-component in Cartesian coordinate system.

84

10 CLASS REFERENCE 10.21 StThreeVector

T phi() const;
Returns the azimuth angle.

T theta() const;
Returns the polar angle.

T cosTheta() const;
Returns the cosine of the polar angle.

T mag2() const;
Returns the magnitude squared of self (r? in a spherical coordinate system).

T mag() const;
Returns the magnitude of self (r in a spherical coordinate system). Note that the
same value can be obtained using the overloaded abs () function (see below).

T perp2() const;
Returns the transverse component squared (R? in cylindrical coordinate system).

T perp() const;
Returns the transverse component (R in cylindrical coordinate system).

T pseudoRapidity() const;

Returns the pseudo-rapidity, i.e. — In(tan §/2) of the vector. Note that this value
is only valid under the assumptions that the vector origins from the center of the
referring reference frame. Be also aware that this member function is not present
in the CLHEP ThreeVector class.

StThreeVector<T> unit() const;
Returns a unit vector parallel to self.

T massHypothesis(T mass) const;
Calculates what the energy component of a 4-vector should be given a mass. Re-
turns:

V/ (xthis)? + (mass)?
Note this function is not provided in CLHEP.

StThreeVector<T> orthogonal () const;
Returns a vector orthogonal to self. The use of this member function is discouraged
as the user should use the dot and cross products to produce such an object.

void rotateX(T angle);
Rotates a vector about the axis according to a right-handed coordinate system by
an angle specified by angle.

void rotateY(T angle);
Rotates a vector about the ¢ axis according to a right-handed coordinate system by
an angle specified by angle.

void rotatezZ(T angle);
Rotates a vector about the Z axis according to a right-handed coordinate system by
an angle specified by angle.

Note: No provision to rotate a vector about an arbitrary axis is provided in
StThreeVector as in CLHEP because it is much more neatly done by a matrix

85

10.21 StThreeVector

10 CLASS REFERENCE

Global Functions

Global Operators

86

or rotation class and this would result in an additional dependency in StThreeVector.
In order to do such a rotation, see StRotation.

template<class X>
T angle(const StThreeVector<X>& vec) const;
Returns the angle between self and vec.

template<class X>
T dot(const StThreeVector<X>& vec) const;
Returns the scalar product of self and vec.

template<class X>

StThreeVector<T>

cross(const StThreeVector<X>& vec) const;
Returns the cross product of self and vec.

template<class T>

T abs(const StThreeVector<T>& vec);

Returns the magnitude of vec. Same as vec->mag(). Be also aware that this
feature is not provided by the CLHEP.

template<class T, class X>
StThreeVector<T>
cross_product(const StThreeVector<T>& vi,

const StThreeVector<X>& v2);
Returns the cross product of v1 and v2. The type of the returned vector is deter-
mined by the type argument of the first vector v1. Note that the name was chosen
for compatibility with the STL.

template<class T, class X>
StThreeVector<T>
operator+ (const StThreeVector<T>& vi,
const StThreeVector<X>& v2);
Returns the sum of v1 and v2. The type of the returned vector is determined by
the type argument of the first vector v1.

template<class T, class X>
StThreeVector<T>
operator- (const StThreeVector<T>& vi,
const StThreeVector<X>& v2);
Returns the v1 minus v2. The type of the returned vector is determined by the type
argument of the first vector v1.

template<class T, class X>
T operator* (const StThreeVector<T>& vi,
const StThreeVector<X>& v2);
Returns the scalar product of v1 and v2. The type of the returned value is deter-
mined by the type argument of the first vector v1.

template<class T>
StThreeVector<T>

10 CLASS REFERENCE

10.21 StThreeVector

Examples

operator* (const StThreeVector<T>& vec,
double c);
Returns vector vec multiplied by scalar c.

template<class T>
StThreeVector<T>
operator* (double c,
const StThreeVector<T>& vec);
Returns vector vec multiplied by scalar c.

template<class T, class X>

StThreeVector<T>

operator/ (const StThreeVector<T>& vec,
X c);

Returns vector vec divided by scalar c.

template<class T>
ostreamé&
operator<< (ostream& os,
const StThreeVector<T>& vec);
Prints vector vec to output stream os.

template<class T>

istream&

operator>> (istream& is,
StThreeVector<T>& vec);

Reads vector vec from input stream is. Be also aware that this operator is not

provided by the CLHEP ThreeVector class.
#i ncl ude " St ThreeVect or. hh"

int main()

{
St Thr eeVect or <doubl e> 3a;
St Thr eeVect or <doubl e> b(1, 2, 3);
St ThreeVector<float> c¢(b);

' << b << endl;
' << ¢ << endl;

cout << "b
cout << "c

/! add two vectors
a = b+c;
cout << "a = b+c = " << a << endl;

/1 check for inequality

if (al!=b*2) {
cerr << "Qops ..." << endl;
return 1;

}

/1 nodify conponents of vector c
c.set X(4);

c.setY(7);

cout << "c = " << ¢ << endl;

87

10.21 StThreeVector

10

CLASS REFERENCE

88

/1 inner product
doubl e d = a*c;
cout << "a*c = " << d << endl;
/1 angle
cout << "angle(a,c) ="

<< a.angl e(c) << endl;

/1 cross product
cout << "a Xc ="
<< a.cross(c) << endl;

/] pseudo rapidity
cout << "pseudo rapidity(c) ="
<< c. pseudoRapidity() << endl;

return O;
}
Programs Output:
b =1(1, 2, 3)
c =(1, 2, 3
a = b+tc = (2, 4, 6)
c =(4, 7, 3)
a*c = 54
angl e(a,c) = 0.575631
a Xc = (-30, 18, -2)

pseudo rapidity(c) = 0.364012

10 CLASS REFERENCE 10.22 StThreeVectorD

10.22 StThreeVectorD

Summary

Synopsis

Description

Related Classes

Persistence

StThreeVectorD is a non-template version of StThreeVector<double> (see
10.21). The code does not contain templates nor does it make use of the Standard
C++ library. All data member are of type double.

#include "'StThreeVectorD.hh"
StThreeVectorD;

The member functions, operators and non-member functions are identical to those
of StThreeVector but might be slightly slower in execution speed since the inline
mechanism cannot be used as extensive as for the template version. Operations can
be mixed with the non-template single precision version StThreeVectorF but
not with any instance of StThreeVector<T>. The templated version should be
preferred where possible.

StThreeVectorD is similar to the templated version but is persistent capable in
ROOT. It does, however, not inherit from TObject.

Within the ROOT framework.

10.23 StThreeVectorF

Summary

Synopsis

Description

Related Classes

Persistence

StThreeVectorF is a non-template version of StThreeVector<float> (see
10.21). The code does not contain templates nor does it make use of the Standard
C++ library. All data member are of type float.

#include "StThreeVectorF.hh"
StThreeVectorF;

The member functions, operators and non-member functions are identical to those
of StThreeVector but might be slightly slower in execution speed since the inline
mechanism cannot be used as extensive as for the template version. Operations can
be mixed with the non-template double precision version StThreeVectorD but
not with any instance of StThreeVector<T>. The templated version should be
preferred where possible.

StThreeVectorF is similar to the templated version but is persistent capable in
ROOT. It does, however, not inherit from TObject.

Within the ROOT framework.

89

10.24 StTimer

10 CLASS REFERENCE

10.24 StTimer

Summary

Synopsis

Description

Related Classes
Persistence
Public

Constructors

Public Member
Functions

90

CPU timer

#include "StTimer.hh"
StTimer timer;

This class can measure elapsed CPU (user) time. The timer has two states: running
and stopped. The timer measures the total amount of time spent in the “running”
state since it was either constructed or reset.

The timer is put into the "running” state by calling member function start(). It
is put into the "stopped” state by calling stop().

StTimer uses the system-dpendent function clock() which returns the number
of "ticks” since it was first called. As a result, StTimer will not be able to mea-
sure intervals longer than some system-dependent value. (For instance, on several
common UNIX systems, this value is just under 36 minutes.)

The resolution of the timer is given by the number of “ticks” per second. This
value is system dependent and can be checked with the resolution() member
function. Make sure that the CPU time between the start and stop of the timer is
significantly larger than the resolution.

N.B. The interface of this class and its functionality were adapted from the tools.h++
class library from RogueWave.

None
None

StTimer();
Constructs a new timer. The timer will not start running until until start() is
called.

double resolution() const
Returns the minimal amount of time in seconds which can be measured by the
timer. This value is system dependent. Typical values range from 10 us to 10 ms.

double elapsedTime() const
Returns the amount of (CPU) time that has accumulated while the timer was in the
running state.

void reset()
Resets (and stops) the timer.

void start()
Puts the timer in the "running” state. Time accumulates while in this state.

void stop()
Puts the timer in the stopped” state. Time will not accumulate while in this state.

10 CLASS REFERENCE 10.24 StTimer

Example #i ncl ude " St Ti mer. hh"
#i ncl ude <tine. h>
#i ncl ude <i ostream h>
#i ncl ude <math. h>

int main()

{

StTinmer timer, total Tiner;

total Tinmer.start();
timer.start();

/1 Spend 5 busy sec.

time_t begin = tine(0);

tinme_t now = begin;

while (now - begin < 5) now = tine(0);

tinmer.stop();

cout << "Test 1:" << endl;
cout << "This test should require less than 5 sec CPU tine. \n"

<< "The exact anmpunt depends strongly on the system" << endl;
cout << "The neasured el apsed CPU time is: "

<< tiner.elapsedTinme() << " sec\n" << endl;

tiner.reset();
timer.start();

const size_t NunBqrt = 1000000;
doubl e x;
for (int i=0; i<NunSqgrt; i++) x = sqrt(double(i));

tinmer.stop();

cout << "Test 2:" << endl;

cout << "The CPU tine to calculate " << Nunfgrt
<< " square roots is: "
<< tiner.elapsedTine() <<

sec\n" << endl;

cout << "The total anpunt of CPU seconds used \n"
<< "to execute this programis: ";
total Timer.stop();

cout << total Ti mer. el apsedTi me() <<

sec." << endl;

return O;
}

Programs Output:

Test 1:

This test should require I ess than 5 sec CPU tine.
The exact ampunt depends strongly on the system
The nmeasured el apsed CPU tinme is: 4.81 sec

Test 2:
The CPU tine to cal cul ate 1000000 square roots is: 0.25 sec

The total anpbunt of CPU seconds used

91

10.24 StTimer 10 CLASS REFERENCE

to execute this programis: 5.06 sec.

92

10 CLASS REFERENCE

10.25 Random

10.25 Random

Summary

Synopsis

Description

Random provides a mechanism to generate pseudo-random numbers in a variety
of distributions. Provided are several engines that provide seeds to classes that are
able to generate random numbers according to several pre-determined distribution.

#include

""Random.hh""

// At least one engine

#include
#include
#include
#include
#include
// And a
#include
#include
#include
#include
#include

// Note:
#include

"JamesRandom.h™ // The engine used by default
""RanecuEngine._h"
"RanluxEngine.h"
""'DRand48Engine.h""
"RandEngine.h""

type of distribution
"RandFlat._h"
""RandPoisson.h"
""RandExponential .h"
"RandGauss.h"
"RandBreitWigner.h"

all Random header files are contained iIn:
""Randomize.h"

Random consists of a series of classes that provide mechanisms to generate pseudo-
random numbers according to one of five pre-determined distributions:

e Flat

Poissonian
Exponential
Gaussian
Breit-Wigner

In order to generate a random number according to these distributions a pseudo-
random number engine must be provided. These engines utilize either a predefined
(static) seed table or a seed given by the user and one of several prescriptions to
generate a pseudo-random number in a flat distribution. These numbers are then
used to generate a random number based on a characteristic distribution.

It should be noted that these classes are nearly exact copies of those used in CLHEP
(hence the lack of the “St” prefix) adapted for use in the STAR Class Library.
Member functions that are not contained within CLHEP are specified as such.

e Arrays passed to member functions should be replaced with STL containers.

e A reduction of member functions by using default values for arguments.

93

10.25 Random

10 CLASS REFERENCE

Persistence

Related Classes

94

There exists two classes which define the two different components of the category:

e RandomEngine.h contains an abstract class HepRandomEngine which de-
fines the interface for all random engines.

e Random. h defines HepRandom which is a base class from which all distri-
bution classes inherit. It defines both static and non-static interfaces as well
as the default engine generator (i.e. HepJamesRandom).

None

The Engines:

Class HepRandomEngine (contained in RandomEngine . h) is a purely abstract
class which defines the user interface for all engines:

double flat(Q);
Returns a pseudo-random number from a flat distribution in the interval (0,1).

void flatArray(const int size, double* vec);
Fills an array vec of size size with random numbers derived from a flat distribu-
tion.

void flatArray(vector<double>& vec);
Fills a vector vec with random numbers derived from a flat distribution. This is
not supported by CLHEP.

void setSeed(long seed, int init);
(Re)-initialize the status of the algorithm with a user specified seed.

void setSeeds(const long* seeds, int init);
(Re)initializes the generator with a zero terminated list of seeds.

void saveStatus() const;
Saves the current status of the instantiated engine in a file (. conT). This provides
a mechanism to recover a series of random numbers.

void restoreStatus();
Reads from a file (specific to the instantiated engine in use) and restore the last
saved engine configuration. For use with saveStatus().

showStatus() const;
Dumps the current engine status to stdout.

long getSeed() const;
Returns the current seed from the current generator.

const long* getSeeds() const;
Returns the current array of seeds from the current generator.

void getTableSeeds(long* seeds, int index) const;
Returns the seed values stored in the global seedTable that is located at the
index position.

The Specific Engines:

10 CLASS REFERENCE 10.25 Random

Public
Constructors

HepJamesRandom implements the algorithm of Marsaglia-Zaman RANMAR
which is described in F. James, Comp. Phys. Comm. 60 (1990) 329. It
is a component of the MATHLIB HEP library for pseudo-random number
generation. This is the default random engine invoked by each distribution
unless the user specifies a different one.

DRand48Engine uses drand48() and srand48() functions from the C stan-
dard library to implement the basic Flat () basic distribution and for setting
seeds. Note that this file is part of the Geant4 simulation toolkit.

RandEngine uses the rand() and srand() functions from the C standard li-
brary to implement the flat () basic distribution and for setting seeds. Note
that this file is part of Geant4 simulation toolkit.

RanecuEngine is an algorithm that is part of the MATHLIB HEP library. Seeds
are taken from a seed table and given an index. The getSeed() member
function returns the current index of the seed table, while the getSeeds()
member function returns a pointer to the local table of seeds at the current
index. Note that this file is part of Geant4 simulation toolkit.

RanluxEngine is an algorithm originally implemented in FORTRAN by Fred
James as part of the MATHLIB HEP library. The initialisation is carried
out using a Multiplicative Congruential generator using formula constants of
L’Ecuyer as described in F. James, Comp. Phys. Comm. 60 (1990) 329. Note
that this file is part of Geant4 simulation toolkit.

The Distributions:

Class HepRandom contained in Random.h is a base class from which all dis-
tribution classes inherit. An object of this class is instantiated by default within
the HEP Random module. An instantiated HepJamesRandom engine is used as a
default algorithm for pseudo-random number generation. HepRandom defines a
static private data member theGenerator and a set of static inlined methods to
manipulate it. By means of theGenerator the user can:

e change the underlying engine algorithm.
e get and set the seeds.
e use any kind of defined random distribution.

Note: Distribution classes inherit from HepRandom and define both static and
non-static interfaces.

HepRandom() ;
Contructor without a seed uses the default engine (i.e. HepJamesRandom).

HepRandom(long seed);
Contructor with a seed specified by the user which uses the default engine (i.e. Hep-
JamesRandom).

HepRandom(HepRandomEngine& algorithm);
Constructor with a user specified generating engine. When algorithm is passed by
reference, it will not be deleted by the HepRandom destructor.

95

10.25 Random

10 CLASS REFERENCE

Public Member
Functions

Static Member
Functions

96

HepRandom(HepRandomEngine* algorithm);
Constructor with a user specified generating engine. When algorithm is passed by
pointer, it will be deleted by the HepRandom destructor.

double flat(Q);
Returns the flat value in the interval (0,1).

double flat (HepRandomEngine* theNewEngine);
Returns a flat value in the interval (0,1) where theNewEngine is used as the
Random Engine.

void flatArray(const int size, double* vect);
Fills the array vect of size size with flat random values. Please note that when
STL containers are implemented the size will no longer be a required argument.

void flatArray(HepRandomEngine* theNewEngine,

const int size, double* vect);
Fills the array vect of size size with flat random values, given a user specified
Random Engine. Please note that when STL containers are implemented the size
will no longer be a required argument.

void setTheSeed(long seed, int lux=3);
Specifies the seed for the engine.

long getTheSeed();
Returns the static definition for the seed.

void setTheSeeds(const long* seeds, int aux=-1);
Specifies a table of seeds for the engine to use.

const long* getTheSeeds();
Returns the table of seeds currently in use.

void getTheTableSeeds (long* seeds, int index);
Returns the table of seeds starting from a specific index position.

HepRandom* getTheGenerator();
Return a pointer to the current static generator.

void setTheEngine (HepRandomEngine* theNewEngine);
Specifies the engine to be used in the pseudo-random number generation.

HepRandomEngine* getTheEngine();
Returns a pointer to the current engine in use.

void saveEngineStatus();
Saves the current engine status in a . conf file.

void restoreEngineStatus();
Restores the status of an engine to that specified in a . conT file. In the absence of
such a file, nothing is done.

void showEngineStatus();
Prints the status of the random engine to stdout.

10 CLASS REFERENCE 10.25 Random

Public Member
Operators

Public Member
Constructors

Public Static Mem-
ber
Functions

double operator(Q;
Generates a single random number.

The Specific Distribution classes include functionality that is specific to their own
properties:

RandFlat defines methods for generating flat random numbers which can be ei-
ther integer or double precision. It also provides static methods to fill
arrays of a specified size.

RandFlat(HepRandomEngine& anEngine);

Constructor instantiates a RandFlat distribution object defining a local engine
(by reference) for it. The corresponding engine object will not be deleted by the
RandF lat destructor.

RandFlat(HepRandomEngine* anEngine);

Constructor instantiates a RandFlat distribution object defining a local engine
(by pointer) for it. The corresponding engine object will be deleted by the RandFlat
destructor.

Static methods to generate random values using the static generator are provided:

double shoot();
Returns a double precision number from a flat distribution in the interval (0,1).

shoot(double width);
Returns a double precision number from a flat distribution in the interval (0,width).

double shoot(double a, double b);
Returns a double precision number from a flat distribution in the interval (a,b).

long shootint(long n);
Returns an integer number from a flat distribution in the interval (0,n).

long shootint(long m, long n);
Returns an integer number from a flat distribution in the interval (m,n).

int shootBit();
Returns either 0 or 1 according to a flat distribution.

void shootArray(const int size, double* vect);

Fills an array vect of size size with double precision numbers in the interval
0,2).

void shootArray(vector<double>& vec);

Fills a vector vec with double precision numbers in the interval (0,1). This is not
supported in CLHEP.

void shootArray(const int size, double* vect,

double Ix, double dx);
Fills an array vect of size size with double precision numbers in the interval
(Ix,dx).

97

10.25 Random 10 CLASS REFERENCE

void shootArray(vector<double>& vec, double Ix, double dx);
Fills a vector vec with double precision numbers in the interval (Ix,dx). This is not
supported in CLHEP.

double shoot(HepRandomEngine* anEngine);
Returns a double precision number in the interval (0,1) where the engine is specified
by the user.

double shoot(HepRandomEngine* anEngine,

double width);
Returns a double precision number in the interval (0,width) where the engine is
specified by the user.

double shoot(HepRandomEngine* anEngine,

double a, double b);
Returns a double precision number in the interval (a,b) where the engine is specified
by the user.

long shootInt(HepRandomEngine* antEngine, long n);
Returns an integer number in the interval (0,n) where the engine is specified by the
user.

long shootlInt(HepRandomEngine* anEngine,

long m, long n);
Returns an integer number in the interval (m,n) where the engine is specified by the
user.

ont shootBit(HepRandomEngine* anEngine);
Returns 0 or 1 where the engine is specified.

void shootArray(HepRandomEngine* anEngine,

const int size, double* vect);
Fills an array vect of size size with double precision numbers in the interval
(0,1) where the engine is specified.

void shootArray(HepRandomEngine* ankEngine,
vector<double>& vec);

Fills a vector vec with double precision numbers in the interval (0,1) where the

engine is specified. This is not supported in CLHEP.

void shootArray(HepRandomEngine* anEngine,
const int size, double* vect,
double 1x, double dx);
Fills an array vect of size size with double precision numbers in the interval
(Ix,dx) where the engine is specified.

void shootArray(HepRandomEngine* anEngine,
vector<double>& vec, double Ix, double dx);

Fills a vector vect with double precision numbers in the interval (Ix,dx) where the

engine is specified. This is not supported in CLHEP.

The following methods use the localEngine to shoot random values, by-passing the
static generator.

98

10 CLASS REFERENCE 10.25 Random

double fire(Q);
Returns a double precision number in the interval (0,1).

double fire(double width);
Returns a double precision number in the interval (0,width).

double fire(double a, double b);
Returns a double precision number in the interval (a,b).

long Firelnt(long n);
Returns an integer number in the interval (O,n).

long Firelnt(long m, long n);
Returns an integer number in the interval (m,n).

int fireBit();
Returns either O or 1.

void fireArray(const int size, double* vect);

Fills an array vect of size size with double precision numbers in the interval
(0,2).

void fireArray(vector<double>& vec);

Fills a vector vec with double precision numbers in the interval (0,1). This is not
supported in CLHEP.

void fireArray(const int size, double* vect,

double Ix, double dx);
Fills an array vect of size size with double precision numbers in the interval
(Ix,dx)

void fireArray(vector<double>& vec, double Ix, double dx);
Fills a vector vec with double precision numbers in the interval (Ix,dx) This is not
supported in CLHEP.

RandGauss defines methods for generating random numbers which are distributed
in a Gaussian manner:

Public Member RandGauss(HepRandomEngine& anEngine);

Constructors Constructor to instantiate a Gaussian random number generator where anEngine
is the generating engine. The corresponding engine object will not be deleted by
the RandGauss destructor.

RandGauss(HepRandomEngine* anEngine);

Constructor to instantiate a Gaussian random number generator where anEngine
is the generating engine. The corresponding engine object will be deleted by the
RandGauss destructor.

Public Static Mem- double shoot();
ber Returns a double precision number from a Gaussian distribution where the mean is
Functions 0 and standard deviation is 1.

double shoot(double mean, double stdDev);
Returns a double precision number from a Gaussian distribution where the mean is
mean and standard deviation is given by stdDev.

99

10.25 Random

10 CLASS REFERENCE

100

void shootArray(const int size, double* vect,

double mean=0.0, double stdDev=1.0);
Fills an array vect of size size with double precision number from a distribution
where the mean is mean (0 by default) and standard deviation is stdDev (1 by
default).

void shootArray(vector<double>& vec,

double mean=0.0, double stdDev=1.0);
Fills a vector vec with double precision humber from a distribution where the
mean is mean (0 by default) and standard deviation is stdDev (1 by default).
This is not supported in CLHEP.

Static methods to shoot random values using a given engine bypassing the static
generator are also provided:

double shoot(HepRandomEngine* anEngine);
Returns a double precision number from a Gaussian distribution where the mean is
0 and standard deviation is 1 and the engine is specified by the user.

double shoot(HepRandomEngine* anEngine,

double mean, double stdDev);
Returns a double precision number from a Gaussian distribution where the mean is
mean and standard deviation is stdDev and the engine is specified.

void shootArray(HepRandomEngine* ankEngine,

const iInt size,double* vect,

double mean=0.0, double stdDev=1.0);
Fills an array vect of size size with double precision numbers from a Gaussian
distribution where the mean is mean and standard deviation is stdDev and the
engine is specified.

void shootArray(HepRandomEngine* ankEngine,
vector<double>& vec,
double mean=0.0, double stdDev=1.0);
Fills a vector vec with double precision numbers from a Gaussian distribution
where the mean is mean and standard deviation is stdDev and the engine is spec-
ified. This is not supported by CLHEP.

Methods using the local engine to generate random values, bypassing the static
generator are also provided:

double fire(Q);
Returns a double precision number from a Gaussian distribution where the mean is
0 and standard deviation is 1.

double fire(double mean, double stdDev);
Returns a double precision number from a Gaussian distribution where the mean is
mean and standard deviation is stdDev.

void fireArray(const int size, double* vect,
double mean=0.0, double stdDev=1.0);
Fills an array vect of size size with double precision number from a distribution

10 CLASS REFERENCE 10.25 Random

Public Member
Constructors

Public Static Mem-
ber
Functions

where the mean is mean (0 by default) and standard deviation is stdDev (1 by
default).

void fireArray(vector<double>& vec,

double mean=0.0, double stdDev=1.0);
Fills a vector vec with double precision number from a distribution where the
mean is mean (0 by default) and standard deviation is stdDev (1 by default).
This is not supported in CLHEP.

RandExponential defines methods for generating random numbers distributed
according to an exponential distribution.

RandExponential (HepRandomEngine& anEngine);

Constructor to instantiate a RandExponential distribution object and specifying a
local engine for it. The engine passed by reference will not be deleted by the
RandExponential destructor.

RandExponential (HepRandomEngine* anEngine);

Constructor to instantiate a RandExponential distribution object and specifying a
local engine for it. The engine passed by pointer will be deleted by the RandExpo-
nential destructor.

double shoot();
Returns a double precision number from an exponential distribution where the
mean is 1.

double shoot(double mean);
Returns a double precision humber from an exponential distribution where the
mean is specified by mean.

void shootArray(const int size, double* vect,

double mean=1.0);
Fills an array vect of size size from an exponential distribution where the mean
is specified by mean (default is 1).

void shootArray(vector<double>& vec, double mean=1.0);
Fills a vector vec from an exponential distribution where the mean is specified by
mean (default is 1). This is not supported in CLHEP.

Static methods to generate random values using a given engine bypassing the static
generator are also provided.

double shoot(HepRandomEngine* anEngine);
Returns a double precision humber from an exponential distribution where the
mean is 1 and the engine is specified by anEngine.

double shoot(HepRandomEngine* anEngine,

double mean);
Returns a double precision humber from an exponential distribution where the
mean is specified by mean and the engine is specified by anEngine.

void shootArray(HepRandomEngine* ankEngine,
const int size, double* vect, double mean=1.0);

101

10.25 Random

10 CLASS REFERENCE

Public Member
Functions

102

Fills an array vect of size size from an exponential distribution where the mean
is specified by mean (default is 1) and the engine is specified by anEngine.

void shootArray(HepRandomEngine* anEngine,
vector<double>& vec, double mean=1.0);

Fills a vector vec from an exponential distribution where the mean is specified

by mean (default is 1) and the engine is specified by anEngine. This is not

supported in CLHEP.

Methods using the local Engine to generate random values, bypassing the static
generator are also provided:

double fire(Q);
Returns a double precision number from an exponential distribution where the
mean is 1.

double fire(double mean);
Returns a double precision number from an exponential distribution where the
mean is specified by mean.

void fireArray(const int size, double* vect,

double mean=1.0);
Fills an array vect of size size from an exponential distribution where the mean
is specified by mean (default is 1).

void fireArray(vector<double>& vec, double mean=1.0);
Fills a vector vec from an exponential distribution where the mean is specified by
mean (default is 1). This is not supported in CLHEP.

RandPoisson defines methods for generation numbers according to a Poisson dis-
tribution. The algorithm was taken from W. H. Press et al., Numerical Recipes
in C, Second Edition.

RandPoisson(HepRandomEngine& anEngine);

Constructor to instantiate a RandPoisson distribution and specifying a local engine
for it. The engine anEngine passed by reference will not be deleted by the Rand-
Poisson destructor.

RandPoisson(HepRandomEngine* anEngine);
Constructor to instantiate a RandPoisson distribution and specifying a local engine
for it. The engine passed by pointer will be deleted by the RandPoisson destructor.

Static methods to shoot random values using the static generator are provided:

long shoot(double mean=1.0);
Returns an integer from a Poissonian distribution with a mean specified by mean
(default is 1).

void shootArray(const int size, long* vect,

double mean=1.0);
Fills an integer array vect of size size from a Poissonian distribution with a
mean specified by mean (default is 1).

10 CLASS REFERENCE 10.25 Random

Public
Constructors

void shootArray(vector<long>& vec, double mean=1.0);
Fills an integer vector vec from a Poissonian distribution with a mean specified by
mean (default is 1). This is not supported by CLHEP.

Static methods to shoot random values using a given engine bypassing the static
generator are also provided:

long shoot(HepRandomEngine* anEngine,

double mean=1.0);
Returns an integer from a Poissonian distribution with a mean specified by mean
(default is 1) and the engine specified by anEngine.

void shootArray(HepRandomEngine* anEngine,

const int size, long* vect, double mean=1.0);
Fills an integer array vect of size size from a Poissonian distribution with a
mean specified by mean (default is 1) and the engine specified by anEngine.

void shootArray(HepRandomEngine* ankEngine,
vector<long>& vec, double mean=1.0);

Fills an integer vector vec from a Poissonian distribution with a mean specified by

mean (default is 1) and the engine specified by anEngine. This is not supported

in CLHEP.

Methods using the localEngine to shoot random values, bypassing the static gener-
ator are also provided:

long Fire(double mean=1.0);
Returns an integer from a Poissonian distribution with a mean specified by mean
(default is 1).

void fireArray(const int size, long* vect,

double mean=1.0);
Fills an integer array vect of size size from a Poissonian distribution with a
mean specified by mean (default is 1).

void fireArray(vector<long>& vec, double mean=1.0);
Fills an integer vector vec from a Poissonian distribution with a mean specified by
mean (default is 1). This is not supported by CLHEP.

RandBreitWigner defines methods for generating random numbers according to
the Breit-Wigner distribution algorithms. Either the mean or the square of the
mean may be specified:

RandBreitWigner (HepRandomEngine& anEngine);

Constructor to instantiate a RandBreitWigner distribution object and defines a local
engine (@anEngine) for it. The engine passed by reference will not be deleted by
the RandBreitWigner destructor.

RandBreitWigner (HepRandomEngine* anEngine);

Constructor to instantiate a RandBreitWigner distribution object and defines a local
engine (anEngine) for it. The engine passed by pointer will be deleted by the
RandBreitWigner destructor.

103

10.25 Random

10 CLASS REFERENCE

Public Static Mem- Static methods to generate random values using the static generator are provided:

ber
Functions

104

double shoot(double mean=1.0, double gamma=0.2);
Returns a double precision number from a Breit-Wigner distribution where the
mean is mean (default is 1) and " is gamma (default is .2).

double shoot(double mean, double gamma, double cut);
Returns a double precision number from a Breit-Wigner distribution where the
mean is mean (default is 1) and T is gamma (default is .2) and cut is cut (de-
fault is 1).

double shootM2(double mean=1.0, double gamma=0.2);
Returns a double precision number from a Breit-Wigner distribution where the
mean is positive mean (default is 1) and I" is gamma (default is .2).

double shootM2(double mean, double gamma,

double cut);
Returns a double precision number from a Breit-Wigner distribution where the
mean is positive mean (default is 1) and T" is gamma (default is .2) and cut is
cut (default is 1).

void shootArray(const int size, double* vect,

double mean=1.0, double gamma=0.2, double cut=1.0);
Fills an array vect of size size with double precision number from a Breit-
Wigner distribution where the mean is mean (default is 1) and T" is gamma (default
is .2) and cut is cut (default is 1).

void shootArray(vector<double>& vec,

double mean=1.0, double gamma=0.2, double cut=1.0);
Fills a vector vec with double precision number from a Breit-Wigner distribution
where the mean is mean (default is 1) and I is gamma (default is .2) and cut is
cut (default is 1). This is not supported in CLHEP.

Static methods to generate random values using a given engine bypassing the static
generator are also provided:

double shoot(HepRandomEngine* anEngine,

double mean=1.0, double gamma=0.2);
Returns a double precision number from a Breit-Wigner distribution where the
mean is mean (default is 1) and T' is gamma (default is .2) and the engine is speci-
fied by anEngine.

double shoot(HepRandomEngine* anEngine,

double mean, double gamma, double cut);
Returns a double precision number from a Breit-Wigner distribution where the
mean is mean (default is 1) and I" is gamma (default is .2) and the engine is speci-
fied by anEngine.

double shootM2(HepRandomEngine* anEngine,

double mean=1.0, double gamma=0.2);
Returns a double precision number from a Breit-Wigner distribution where the
mean is positive mean (default is 1), T' is gamma (default is .2), and the engine
is specified by anEngine.

10 CLASS REFERENCE 10.25 Random

double shootM2(HepRandomEngine* anEngine,

double mean, double gamma, double cut);
Returns a double precision number from a Breit-Wigner distribution where the
mean is positive mean (default is 1), T is gamma (default is .2), and the engine
is specified by anEngine.

void shootArray(HepRandomEngine* anEngine,
const int size, double* vect, double mean=1.0,
double gamma=0.2, double cut=1.0);
Fills an array vect of size size with double precision number from a Breit-
Wigner distribution where the mean is mean (default is 1), I" is gamma (default is
.2) and cut is cut (default is 1), and the engine is specified by anEngine.

void shootArray(HepRandomEngine* ankEngine,
vector<double>& vec, double mean=1.0,
double gamma=0.2, double cut=1.0);
Fills a vector vec with double precision number from a Breit-Wigner distribution
where the mean is mean (default is 1), T is gamma (default is .2) and cut is cut
(default is 1), and the engine is specified by anEngine. This is not supported in
CLHEP.

Methods using the local engine to generate random values, by-passing the static
generator are also provided.

double fire(double mean=1.0, double gamma=0.2);
Returns a double precision number from a Breit-Wigner distribution where the
mean is mean (default is 1) and T is gamma (default is .2).

double fire(double mean, double gamma, double cut);
Returns a double precision number from a Breit-Wigner distribution where the
mean is mean (default is 1) and T is gamma (default is .2).

double FireM2(double mean=1.0, double gamma=0.2);
Returns a double precision number from a Breit-Wigner distribution where the
mean is positive mean (default is 1) and T" is gamma (default is .2).

double fireM2(double mean, double gamma,

double cut);
Returns a double precision number from a Breit-Wigner distribution where the
mean is positive mean (default is 1) and T is gamma (default is .2).

void fireArray(const int size, double* vect,

double mean=1.0, double gamma=0.2, double cut=1.0);
Fills an array vect of size size with double precision number from a Breit-
Wigner distribution where the mean is mean (default is 1) and T" is gamma (default
is.2) and cut is cut (default is 1).

void fireArray(vector<double>& vec,

double mean=1.0, double gamma=0.2, double cut=1.0);
Fills a vector vec with double precision number from a Breit-Wigner distribution
where the mean is mean (default is 1) and T is gamma (default is .2) and cut is
cut (default is 1). This is not supported in CLHEP.

105

10.25 Random 10 CLASS REFERENCE

Examples #i ncl ude <i ostream h>
#i ncl ude " St d obal s. hh"
#i ncl ude "Random h"

/1 the random engi nes
#i ncl ude "JanmesRandom h"
#i ncl ude "Ranl uxEngi ne. h"

/1 the different distributions
#i ncl ude "RandFl at. h"

#i ncl ude " RandPoi sson. h"

#i ncl ude "RandExponenti al . h"

#i ncl ude "RandGauss. h"

#i ncl ude "RandBreitWgner.h"

int main()
{
int i, jj;

const Stint size = 5;
const StIlnt nunmber OfF Nunbers = 5;

/'l Generator nust be given an engine:
/1 - HepJamesRandom used by defaul t

HepJanmesRandom engi nel;
Ranl uxEngi ne engi ne2;

/ | HepRandom quasi Randon{ engi nel); /1 pass engine by reference
/ I HepRandom quasi Randon{ &ngi nel); // pass engine by pointer

/] engi ne. showSt at us() ; /'l show status of engine

I ong seed = 7;
HepRandom quasi Random /1 or quasi Randon(seed);

St Doubl e quasi RandomNunber =
quasi Random fl at () ;
PR(quasi RandomNurber) ;

int *vecl = new int[size]; /Il Stint vecl [si ze]
doubl e *vec = new doubl e[si ze]; /1 St Doubl e vec|size];

guasi Random f | at Array(si ze, vec);

cout << "Pseudo- Random nunbers froma flat distribution." << endl;
for(int ii=0; ii<size; ii++)
cout << "i " << *(vec+ii) << endl;

PR(quasi Random get TheSeed());
HepJamesRandom j r;

cout << "All these nunbers are the same" << endl;
for(ii=0; ii<size;ii++) {
jr.saveStatus();
PR(jr.flat());
jr.restoreStatus(); /'l restoring status keeps engi ne sanme

106

10 CLASS REFERENCE 10.25 Random

}

cout << "Different distributions:" << endl;

RandFl at flatDi stribution(enginel);
RandGauss gaussDi stri buti on(engi ne2);
RandExponenti al exponenti al Di stribution(enginel);
RandPoi sson poi ssonDi stri buti on(engi ne2);

RandBrei t Wgner breitWgnerDistribution(engine2);

doubl e nean
doubl e width

2,
10;

cout << "Nunbers froma Flat Distribution:" << endl;
for(jj=0; jj<number O Nunbers; jj++) {
St Doubl e fl at Nunber =
flatDistribution.fire(w dth,w dth+10);
PR(f | at Nunber) ;
}

cout << "\nNunmbers froma Gaussian Distribution:" << endl;
for(jj=0; jj<numberONunbers; jj++) {
St Doubl e gaussNunmber =
gaussDi stri bution. shoot ();
PR(gaussNumnber) ;

cout << "\ nNunbers from an Exponential Distribution:" << endl;
for(jj=0; jj<numberONunbers; jj++) {
St Doubl e exponenti al Number =
exponenti al Di stri bution. shoot (&engi ne2, nean);
PR(exponenti al Nunber) ;

cout << "\nNunbers froma Poissonian Distribution:" << endl;
for(jj=0; jj<numberOfNunbers; jj++) {
St Doubl e poi ssonNunber =
poi ssonDi stri buti on. shoot ();
PR(poi ssonNunber) ;

cout << "\nAn Array of Numbers froma Breit-Wgner Distribution:" << endl;
brei t WgnerDi stribution.shoot Array(size, vec);

for(i=0; i<size; i++)
cout << "(" << i << ") " << *(vecti) << endl;

return O;

}
Programs Output:

quasi RandomNunber = 0. 995292

Pseudo- Random nunbers froma flat distribution.
i 0.363878

i 0.657671

i 0.0843759

107

10.25 Random 10 CLASS REFERENCE

i 0.129367

i 0.447258

guasi Random get TheSeed() = 19780503
Al'l these nunbers are the sane:
jr.flat() 0. 995292

jr.flat() 0. 995292

jr.flat() 0. 995292

jr.flat() 0. 995292

jr.flat() 0. 995292

Different distributions
Nunbers froma Flat Distribution

fl at Number = 19. 9529
flat Nunber = 13. 6388
fl at Number = 16. 5767
flat Nunber = 10. 8438
fl at Number = 11.2937

Nunbers froma Gaussian Distribution

gaussNunmber = -0.641262
gaussNunmber = 0.243269
gaussNunber = -0.151572
gaussNunmber = -1. 06513
gaussNunber = -0.498471

Nunbers from an Exponential Distribution

exponenti al Nunber = 1.6481
exponenti al Nunber = 0.0081336
exponenti al Nunber = 0.814686
exponenti al Number = 1.13064
exponenti al Nunber = 6.33225

Nunbers from a Poi ssonian Distribution
poi ssonNunber
poi ssonNunber
poi ssonNunber
poi ssonNunber
poi ssonNunber

o munn
OO0 wWww

An Array of Numbers froma Breit-Wgner Distribution
(0) 0.60626
(1) 1.17676
(2) 1.20535
(3) 0.986062
(4) 0.982262

108

A HELIX PARAMETRIZATION

A Helix Parametrization

The trajectory of a charged particle in a static uniform magnetic field with B = (0,0, B;) is a helix. In
principle five & parameters are needed to define such a helix. From the various possible parametrizations
we describe here the version which is well suited for the geometry of a collider experiment and therefore
used for the implementation of the StHelix class.

This parametrization describes the helix in Cartesian coordinates, where x,y and z are expressed as func-
tions of the track length s.

1
z(s) = zo+ ;[cos(@o + h s Kk cosA) — cos D] (1)
1
y(s) = wo+ E[sin(@() + h s K cosA) — sin @] (2)
2(8) = zo+ssin) (3)

where here and in the following:

s is the path length along the helix

Zo, Yo, 20 IS the starting pointat s = s =0

A is the dip angle

K isthe curvature,ie. x = 1/R

B is the z component of the homogeneous magnetic field (B = (0,0, B,))
q is charge of the particle in units of positron charge

h is the sense of rotation of the projected helix in the zy-plane,
i.e. h = —sign(¢B) = +1

®, is the azimuth angle of the starting point (in cylindrical coordinates) with respect to the helix axis
(P9 =¥ — hn/2)

¥ s the arctan(dy/dx)s—o, i.€. the azimuthal angle of the track direction at the starting point.

The meaning of the different parameters is visualized in Fig. A.1.

A.1 Calculation of the particle momentum

The circle fit in the zy-plane gives the center of the fitted circle (z., y.) and the curvature x = 1/R while
the linear fit gives zp and tan A. The phase of the helix (see Fig. A.1) is defined as follows:

$y = arctan (M) 4
ZTo — Tc

8see A.8 for a detailed discussion on the number of parameters needed.

109

A.1 Calculation of the particle momentum A HELIX PARAMETRIZATION

s>0
ZA
Y |
P
> of
A
(Xcl yc) v‘
Zg
R
- -
X Sxy
(a) Projection of a helix on the zy plane. The crosses (b) Projection of a helix on the sz plane.
mark possible data points.
Figure A.1: Helix parametrization
The reference point (zo, yo) is then calculated as follows:
cos ®
T = o+ ——)
K
sin ¢
Yo = Yot —— 6)
and the helix parameters can be evaluated as:
U = &+ hn/2 ()
pL = cqB/k 8
p, = pirtanA (9)

p = \/Pi +p? (10)

where & is the curvature in [m~!], B the value of the magnetic field in [Tesla], ¢ the speed of light in [m/ns]
(=~ 0.3) and p, and p, are the transverse and longitudinal momentum in [GeV/c].

110

A HELIX PARAMETRIZATION A.2 Distant measure

A.2 Distant measure

The minimal squared distance M; between a helix and a point ¢ with position (z;, y;, z;) is given by

M, = M®Y 4+ MP (11)
M; = (i — () + (yi —y(s")? + (21 — 2(s")* (12)
(13)

In literature one finds the following approach to solve this problem analytically by neglecting Mz.(z) in the
derivatives.

Ty
W7 (14)
ds

This formula can only serve to derive an approximation for the real distance. For large dip angles the errors
become large depending also on the actual helix parameters. The advantage is that s’ can be calculated
analytically:

1 (yi — yo) cos By — (x; — x0) sin By
= t 15
T S (1/n + (z; — mo) cos Do + (y; — yo) sin P (15)

Note, that this formula can not be used to derive the distance of closest approach to a point. In order to
derive the distance of closest approach the following equation has to be solved:

dM;

5 =0 (16)

which can be written as

2 <1Ei —z0 — cos(®o + hsm;os A) — cos (I)O> sin(®g + hskcos) hcos A —

sin(®g + hsk cos A) — sin @
21yi—Y — .

2 (z; — 20— ssin\)sinA =0 7

) cos(®g + hskcosA) hcos A —

The root of eq. 17 can easily be found with the Newton or regula falsi method with s’ from eq. 15 as starting
value. For the Newton method the second derivative is needed as well.

=0 (18)

111

A.3 Distance of closest approach between two helices A HELIX PARAMETRIZATION

which is

2 (sin(®g + hsk cos \))” h? cos® A +
(cos(®g + hsk cos A) — cos <I>0)
2 T; — To—

K
cos(®o + hsk cos \)h%k cos® A +
2 (cos(®g + hsk cos\))” h? cos® A +
(sin(®q + hsk cos A) — sin <I>0>
2 \yi—Yo—

K
sin(®q + hsk cos A\)h?k cos® A +
2 sin®A=0 (19)

A.3 Distance of closest approach between two helices

The closest distance between two helices H;, and H, is a problem which again can be solved analytically
only in 2 dimensions, i.e., in the xy-plane. The solution in 3 dimensions cannot even be solved by standard
numerical methods (as the Newton method) but requires more sophisticated method since we have to find
2 unknown parameters s; and s, in

d2M($1, 82)

= 20
dsldSQ 0 ()

where M is the distance between the two helices at s and ss.

Figure A.2: Two intersecting helices in the xy-plane

112

A HELIX PARAMETRIZATION A.4 Intersection with a cylinder (p=const)

In the xy-plane:
Given two helices with radii R; and R, and centers in the xy-plane o1 = (zc1,yc1) and oa = (zc2, Ye2)
we have to find vector @ as depicted in Fig.A.3. The angle « can be calculated as:

_ Ri+|* - R3
CcCosa = W (21)

where 7 is the vector between the two centers. The absolute coordinates of one intersection point (measured
from o,) can be obtained by calculating vector @ and adding o1 .
Z; = Zei+ Ri[(xez —xe1) cosa — (Ye2 — Yer) sin a]/|7; (22)
Yi = Yo+ Ra[(Te2 — ze1)sina+ (Ye2 — ye1) cosa]/|7; (23)
If cos v is exactly 1 we have only one solution. For the case cos a < 1 we get two valid intersection points
(zi,y;) and (z;,y;) where the latter is simply given by:
zj = T+ Raf(Te2 — ze1) cosa+ (Ye2 — ye1) sinal/|7; (24)
Yj Yer + Ra[(ye2 — yer) cosa — (T2 — z1) sinal /|7; (25)

In the case cosa > 1 the circles do not intersect. Then the distance of closest approach is simply given by
the intersection of a line between the two centers and the two helices. For helix H; we get:

T = zo+ Ri(xer — zer)/|F); (26)
= Y1 + Ri(Ye2 — ye1)/I7; 27)

In 3 dimensions:

Usually an iteration method is applied which uses the intersection points in the xy-plane as start values.
Care has to be taken if both helices have different dip angle A since the start values then significantly deviate
from the actual solution.

A.4 Intersection with a cylinder (p=const)

In order to obtain the path length s at which the helix intersects with a cylinder of given radius p we have
to solve the following equation:

PP =a(s)* +y(s)” (28)
Using eg. 1 and 2 we obtain the two analytic solutions for s; and so:
sij2 = — (®o+2arctan [(2yo k — 2 sin By + [—K% (—4p% + 4yo® — 2 p°K 23— (29)
2p2/<52yo2 + 2m02m2y02 + p4n2 + 2%k + y04n2 — 4303k cos Do+
4202 cos® g — 4y02 cos® dy—
4yo®k sin &g + 4 p’k o cos By + 4 p*k yo sin By — 402K yo sin Bo—
4y’ Kk xo cos By + 8o cos Bgyo sin @0)]1/2) /
(=p*K® + 2+ 20°K® + 2 cos By + yo K> —

2k —2x0 k cos By — 2o k sin Bg)]) A k™ (cos /\)_1

113

A.5 Intersection with a plane A HELIX PARAMETRIZATION

A.5 Intersection with a plane

's=0

Figure A.3: Intersection of a helix with a plane
Any plane can be described by its normal vector 7 (orientation) and an arbitrary point in this plane
(position). The vector g'which describes the intersection point must fulfil:
7 =0. (30)
Hence:
(@-r)-i=0. (31)

where @ is given by @ = (x(s"),y(s'), 2(s')) as described in eq. 1-3. In order to obtain the path length s’
where the helix intersects with the plane the following equation has to be solved:

z(s)ng +y(s)ny + z(s)n, — - = (32)
A+ngycosS+nysinS +kn,ssinA = 0 (33)
where:
A = k(07T —7-7) —ngycosPy —nysin Py (34)
S = hskcosA+ @ (35)

The root of eq. 33 can now easily be determined by a suitable numerical method (Newton).

114

A HELIX PARAMETRIZATION A.6 Limitations

A.6 Limitations

The only non-numerical limitations of this parametrization are:

—m/2< X < 7/2 (36)
k > 0 37)

A7 CaseB=0

For the special case B = 0 the trajectory becomes a straight line, i.e. Kk = 0 and R = oo. Care must
be taken in the numerical calculation of the parametrization because of the singularity in eg. 1 and 2. The
correct form is:

z(s) = =z — shcossin @ (38)
y(s) = wyo+ shcoscos ®q (39)
z(s) = zp+ssinA (40)

Important: For B = 0 the sense of rotation is ill defined. All what matters is that ®, = ¥ — hx/2 is done
correctly, i.e. with the same arbitrary h. In the following we assume h = +1 for convenience.

Eq. 15 then reads as:

1
cos A

Eq. 17 can now be solved analytically;

!

[(ys — yo) cos @¢ — (z; — To) sin B (41)

dMgee
=0 42
P (42)
gives:
5% = cos Acos ®o(y; — yo) —

cos Asin ®¢(z; — x9) +
sin A(z; — 20) (43)

The solution for the intersection with a cylinder (eq. 29) now reads:

s1/2 = [®o cos A sin®g —yo cos A cos Do £ (44)
[—cos® A (2zo cos ®gyo sin®g — p® + (45)
Yo — Yo cos” By + zj cos® Bg)] 1/2} cos® A (46)

The same holds for the intersection of a helix with a plane where in case of zero curvature eq. 33 can be
solved analytically.
, F-n—0-7

= 47
5 —ng cos Asin @g + ny cos A cos @ + n, sin A (47)

115

A.8 Why are there only 5 independent helix parameters? A HELIX PARAMETRIZATION

A.8 Why are there only 5 independent helix parameters?
Imagine an arbitrary helix sitting in 3D space. What is required to completely specify it ?

1. the line coinciding with the axis - if its oriented in any arbitrary direction, then this requires 4 param-
eters, or 2 direction angles (theta and phi in usual spherical coordinates) plus 2 more coordinates to
locate the line in a plane perpendicular to this direction.

For the special case in STAR we always fix the direction parallel to the z-axis so this reduces the
number of this subset of parameters from 4 to 2.

So these are the (x,y) coordinates of the center of the circular projection onto the x-y plane.
2. Then we must give the radius of the circular projection - 1 more param,
3. Next we must specify the pitch and the handedness. - 2 more params.

4. Finally, we have to give a phase angle or some single number that tells us where this thing is actually
sitting w.r.t. some given plane. For STAR this could be the phase angle at the point where the helix
intersects the x-y plane. - 1 more parameter.

So, in general there are 7 continuously varying parameters plus a handedness switch. For the special case
STAR uses there are then 5 independent parameters plus the left handed/right handed switch. So yes, 6
parameters are required. But for track fitting purposes only 5 are relevant. The handedness of the particle’s
trajectory will be determined by the sign of B, x charge (using the actual charge) and the sign of the z-
component of momentum (using the actual p, momentum value). However, in general the charge sign
and p, direction are not known, based on track fitting alone. These signs must be assumed using some
selection criteria, usually that the particle is moving “outward and away” from the general area of the
beam. These two signs are not independent of each other but must be chosen to give a path consistent
with the handedness that the space point positions require. So there is one algebraic sign that is ambiguous
and that we have to choose. Having done this there remain 5 independent fitting parameters. In our track
parametrization we put the choice of algebraic sign into the both that of the charge and the tanl parameter,
consistently we hope.

So to summarize, there are 6 parameters, one is a sign selected by some criteria, the remaining 5 are varied
to fit the space points. The track parameter error matrix is then 5 x 5 symmetric, and thus includes 15
distinct quantities.

Text from Lanny Ray written during an email exchange on this very topic.

116

Index

Symbols

CROOT o 4
... 2
A

abs. . 55, 85, 86
aCC (HP compiler)ccvvvin.t. 3
AccessingSCL. ... 4
afs . 4
ADX 3
angles. ... 32
ANSE .. 4
AVOQAdrO . ..ot 8
B

barn. 12
baryons 26
BOCK, R.. oo 44
bool..... ..o 5
booSt.o 55
bosons....... ... 26
C

clight. ... 8
cfortranh..........o 38
cfrontcompiler.....................oL 5
cfrontcompilerl 81
CINT o 5
circlefit............ 34
classbrowserl 5
CLHEP...2, 8, 11, 51, 54-56, 62, 82, 85-87, 93
coding Guidelines......................... 62
compiler...... ... 3
CPUtIMer......coovi e 90
CUNVALUIE ...t 109
CV S 4
CVSROOT ..ttt 4
D

dea. ..o 46, 111
dca between helices...................... 112
dipangle...............cooiii 109

distance of closest approach 46, 111

documentation, 5
E
electroncharge............. ... il 8
electron.massC2.........ccooviiiiiinennt. 8
G

GEANTS. ... 11
Geant31d. ... 17
GEANTA ... 95
Geantd 17
GeV 12
H

halfpi ... 8
Heavy-lonPhysicst 51
helix parameters 109
HepBooleanooiiiat. 10
HepDouble ..., 10
HepFloat.............ccoiiiiiiin ., 10
HepInt..........ooi 10
hertz. ... i 12
HP-UX . . i 3
HTML .o 5
Hz. o 12
|

ONS . e 26
X e 3
L

LDLIBRARYPATHcoiiiiin 5
leptons. ... 26
limitations..................oo i 5
LinUX .. 3
Lorentzboost................ooiiii.. 55
M

P2 T (0 4
math functions............................ 61
member functions 2
memory allocation 73
memoryinfo..............o 71
MESONS . .o vttt ettt ettt et e 26

INDEX INDEX
MeV .. 12 ST NONAMESPACESovnntn. 4
MICrOSECONdo v v 12 ST NO_.NUMERICLIMITS 4
millimeter ... 11 ST NO_TEMPLATE DEF_ARGS............ 4
111 14 ST_OLD_CLHEP_SYSTEM_OF_UNITS...... 4
Mrad. ... 14 StAlpha. ... 17

Standard C++ Library 2,4
N Standard Template Library 2
NAMeSPaCce. ..., 11 SLANGIE ...t 32
nanosecond................. 12 StANtIBMESONZEr0.o, 17
MS. 15 StANtiBSMeSONZEro.vvvvn... 17
o StANtiDMesonZerocovvvvinin.. 17

StAntiKaonZero ..., 17
Object Space..........oovveienei 3 StAntiLambda ...l 17
P StAntiLambdacPlus 17
DACIES ... oo 17 StAntiNeutrinoE L 17
Dath 1ength oo 109 StAnt!Neutr!noMu 17
PDGencodingoovvvvveeniiinannnnn. 17 gtﬁnt!meutnnoTau """""""""""" i;

tAntiNeutron ...

ohesophy. ... T2 StAniOmegaczero 17
Physical CONStaNtSvvoeeeeeeennn.. 8 StAntiOmegaMinus 17
Do 8 StAntiProton..............oo 17
DI2 . 8 StAntiSigmacPlus......................... 17
platform............. 3 StANtSigmacPlusPlus...................... 17
POOL. . 73 StAntiS?gmacZ_ero """"""""""""" L7
PRO - oo 10 StAntiSigmaMinusl 17

StAntiSigmaPlus..............l 17
R StAntiSigmazero................coiiann. 17
L P 14 StANtIXICPIUS ... 17
radiano 12 StANtIXicZero................oo 17
RandBreitWigner 103 StANtIXiMinus. ... 17
RandExponential......................... 101 StANtiXiZero ... 17
RandFIat . .. oo 97 StBMesonMinus ...t 17
RanNdGausso 99 StBMesonPIUS oo 17
RaNOM . o oo oo 93 StIBMesonZero...........coovvviiiiiinanns 17
random numbers 79 StBOOSE ... 62
RaNdPOISSON.\ 102 StBsMesonZero.....................o.L 17
ROOT . .o oo 5 StDeuteron ... 17

StDMesonMinuS ..o 17
S StDMeSonPIUSo 17
SCL. 3 StDMESONZEr0.v i 17
seedtable.......... ... 93 StDouble.......... oo 10
SION() e e 10 StDsMesonMinus ..o, 17
Solaris ... 3 StDsMesonPIuSovv i 17
SOM() v ee e 10 StElectron............ccooiii i 17
ST NOEXCEPTIONS ...t 4 StEta. .o 17
ST NO_MEMBER_TEMPLATES............ 4 StEtaPrime ... 17

118

INDEX INDEX
StFastCircleFitter 34 StPrompt. ... 5,77
StFloat........cooi 10 StProton. ... 17
StGamma 17 straightline........... ool 44
StGetConfigValue 36 StRandom i 79
StHboOK ... 38 StRhOMiNUSt 17
StHE3 ..o 17 StRhoPIus 17
StHeliX........ooovii 44,74, 109 StRhOZEro.........oooviiiiiii i, 17
StHelixD ... 50 StRotation................... i 62
Stint. ... 10 StSigmacPlus...........co 17
StIPSI . o 17 StSigmacPIusPlus................... oL 17
StKaonMinusS.........coovii i 17 StSIgMacZero......oovvv v 17
StKaonPIus. ... 17 StSigmaMinus 17
StKaonZerocoovviiiiiii i 17 StSigmaPIus. ... 17
StKaonZeroLong.............c.cooiiiat. 17 StSigmaZero..........ooiiiiii i 17
StKaonZeroShort.....................oo.L. 17 StSizeType ..o 10
ST 36 StTauMINUS ..o 17
StLambdaoo 17 StTauPlus ... 17
StLambdacPlus.......................o.L 17 StTemplates....................oott. 5,81,81
StLONG ..ot 10 StThreeVector............... 36, 51, 62, 77, 82
StLorentzVector.................... 51, 62, 83 StThreeVectorD..................ooiilt. 89
StLorentzVectorD ... 60 StThreeVectorFl 89
StLorentzVectorF ... 60 SITIMEr ..o 90
StMath. ... 61 SETHtON . ..o 17
StMatrix ... 62 SEXicPIus ... 17
StMatrixD..........cooiii i 70 StXICZEro ... 17
StMatrixF 70 SEXIMINUS. 17
StMemoryInfo................... 71 SEXIZEro ... 17
StMemoryPool................ciit, 73 SUN L 5
StMuoNnMiNUS 17 SUPPOI . ettt 5
StMuonPlus ... 17 Systemofunitsol 11
StNeutrinoEol 17

StNeutrinoMuooveii e 17 T

SENEULHINOTAUo, 17 timer......ooi 90
SENEULTON ..o, 17 TObject. ... 50, 76
SINPOS . . . oo 10 BWOPE . ot 8
StOMegacZero.ovvveiiii i 17

StOmegaMinusooiviiiiinn... 17 v

StOpticalPhoton.oooeeeeeee i, 17 VECIOT. . 62
StParticleDefinition........................ 17 Visual G 3
StParticleTable............................ 21

StPhysicalHelix........................ 44,74

StPhysicalHelixD 76

StPioNnMINUS.o 17

StPionPlus. ... 17

StPIONZErocovvi i 17

StPositron ... 17

119

	I User Guide
	Philosophy and Motivation
	Platforms and Compilers
	Organization of the SCL
	Accessing the SCL
	Macros
	Documentation
	Known Problems
	Support and Reporting Bugs

	II Reference Manual
	Global Constants and Definitions
	Physical Constants
	StGlobals
	SystemOfUnits
	Definition of Particles
	Basic Concept
	Implementation of Particles
	StParticleDefinition
	Predefined Particles
	Header Files
	How to Define a New Particle
	The Particle Table
	StParticleTable
	Examples
	List of Predefined Particle Definitions
	UML Diagrams

	Class Reference
	StAngle
	StFastCircleFitter
	StGetConfigValue
	StHbook
	StHelix
	StHelixD
	StLorentzVector
	StLorentzVectorD
	StLorentzVectorF
	StMath
	StMatrix
	StMatrixD
	StMatrixF
	StMemoryInfo
	StMemoryPool
	StPhysicalHelix
	StPhysicalHelixD
	StPrompt
	StRandom
	StTemplates
	StThreeVector
	StThreeVectorD
	StThreeVectorF
	StTimer
	Random

	Helix Parametrization
	Calculation of the particle momentum
	Distant measure
	Distance of closest approach between two helices
	Intersection with a cylinder (=const)
	Intersection with a plane
	Limitations
	Case B = 0
	Why are there only 5 independent helix parameters?

